Fr. 236.00

Complex Networks XV - Proceedings of the 15th Conference on Complex Networks, CompleNet 2024

Inglese · Copertina rigida

Spedizione di solito entro 2 a 3 settimane (il titolo viene stampato sull'ordine)

Descrizione

Ulteriori informazioni

The International Conference on Complex Networks (CompleNet) brings together researchers and practitioners from diverse disciplines working on areas related to complex networks. CompleNet has been an active conference since 2009. Over the past two decades, we have witnessed an exponential increase in the number of publications and research centres dedicated to this field of Complex Networks (aka Network Science). From biological systems to computer science, from technical to informational networks, and from economic to social systems, complex networks are becoming pervasive for dozens of applications. It is the interdisciplinary nature of complex networks that CompleNet aims to capture and celebrate. The CompleNet conference is one of the most cherished events by scientists in our field. Maybe it is because of its motivating format, consisting of plenary sessions (no parallel sessions); or perhaps the reason is that it finds the perfect balance between young and senior participation, a balance in the demographics of the presenters, or perhaps it is just the quality of the work presented.

Sommario

Chapter 1: Mapping low-resolution edges to high-resolution paths: the case of traffic measurements in cities.- Chapter 2: From Low Resource Information Extraction to Identifying Influential Nodes in Knowledge Graphs.- Chapter 3: Inhomogenous Marketing Mix Diffusion.- Chapter 4: Modelling both pairwise interactions and group effects in polarization on interaction networks.- Chapter 5: Computing Motifs in Hypergraphs.- Chapter 6: Extending network tools to explore trends in temporal granular trade networks.- Chapter 7: Expressivity of Geometric Inhomogeneous Random Graphs-Metric and Non-Metric.- Chapter 8: Social Interactions Matter: Is Grey Wolf Optimizer a Particle Swarm Optimization Variation?.- Chapter 9: Exploring Ingredient Variability in Classic Russian Cuisine Dishes through Complex Network Analysis.- Chapter 10: Unraveling the Structure of Knowledge: Consistency in Everyday Networks, Diversity in Scientific.- Chapter 11: Kinetic-based force-directed graph embedding.- Chapter12: Deep Graph Machine Learning Models for Epidemic Spread Prediction and Prevention.- Chapter 13: EleMi: A robust method to infer soil ecological networks with better community structure.- Chapter 14: Interpreting Node Embedding Distances Through n-order Proximity Neighbourhoods.- Chapter 15: Edge Dismantling with Geometric Reinforcement Learning.- Chapter 16: Public Transit Inequality in the Context of the Built Environment.

Dettagli sul prodotto

Con la collaborazione di Hugo Barbosa (Editore), Hugo Barbosa et al (Editore), Federico Botta (Editore), Mariana Macedo (Editore), Ronaldo Menezes (Editore)
Editore Springer, Berlin
 
Lingue Inglese
Formato Copertina rigida
Pubblicazione 14.04.2024
 
EAN 9783031575143
ISBN 978-3-0-3157514-3
Pagine 218
Dimensioni 155 mm x 14 mm x 235 mm
Peso 503 g
Illustrazioni XII, 218 p. 77 illus., 72 illus. in color.
Serie Springer Proceedings in Complexity
Categoria Scienze naturali, medicina, informatica, tecnica > Matematica > Altro

Recensioni dei clienti

Per questo articolo non c'è ancora nessuna recensione. Scrivi la prima recensione e aiuta gli altri utenti a scegliere.

Scrivi una recensione

Top o flop? Scrivi la tua recensione.

Per i messaggi a CeDe.ch si prega di utilizzare il modulo di contatto.

I campi contrassegnati da * sono obbligatori.

Inviando questo modulo si accetta la nostra dichiarazione protezione dati.