Fr. 50.90

Polynomial Identity Rings

Inglese · Tascabile

Spedizione di solito entro 6 a 7 settimane

Descrizione

Ulteriori informazioni

A ring R satisfies a polynomial identity if there is a polynomial f in noncommuting variables which vanishes under substitutions from R. For example, commutative rings satisfy the polynomial f(x,y) = xy - yx and exterior algebras satisfy the polynomial f(x,y,z) = (xy - yx)z - z(xy - yx). "Satisfying a polynomial identity" is often regarded as a generalization of commutativity.
These lecture notes treat polynomial identity rings from both the combinatorial and structural points of view. The former studies the ideal of polynomial identities satisfied by a ring R. The latter studies the properties of rings which satisfy a polynomial identity.
The greater part of recent research in polynomial identity rings is about combinatorial questions, and the combinatorial part of the lecture notes gives an up-to-date account of recent research. On the other hand, the main structural results have been known for some time, and the emphasis there is on a presentation accessible to newcomers to the subject.
The intended audience is graduate students in algebra, and researchers in algebra, combinatorics and invariant theory.

Sommario

A Combinatorial Aspects in PI-Rings.- Vesselin Drensky.- 1 Basic Properties of PI-algebras.- 2 Quantitative Approach to PI-algebras.- 3 The Amitsur-Levitzki Theorem.- 4 Central Polynomials for Matrices.- 5 Invariant Theory of Matrices.- 6 The Nagata-Higman Theorem.- 7 The Shirshov Theorem for Finitely Generated PI-algebras.- 8 Growth of Codimensions of PI-algebras.- B Polynomial Identity Rings.- Edward Formanek.- 1 Polynomial Identities.- 2 The Amitsur-Levitzki Theorem.- 3 Central Polynomials.- 4 Kaplansky's Theorem.- 5 Theorems of Amitsur and Levitzki on Radicals.- 6 Posner's Theorem.- 7 Every PI-ring Satisfies a Power of the Standard Identity.- 8 Azumaya Algebras.- 9 Artin's Theorem.- 10 Chain Conditions.- 11 Hilbert and Jacobson PI-Rings.- 12 The Ring of Generic Matrices.- 13 The Generic Division Ring of Two 2 x 2 Generic Matrices.- 14 The Center of the Generic Division Ring.- 15 Is the Center of the Generic Division Ring a Rational Function Field?.

Riassunto

A ring R satisfies a polynomial identity if there is a polynomial f in noncommuting variables which vanishes under substitutions from R. For example, commutative rings satisfy the polynomial f(x,y) = xy - yx and exterior algebras satisfy the polynomial f(x,y,z) = (xy - yx)z - z(xy - yx). "Satisfying a polynomial identity" is often regarded as a generalization of commutativity.
These lecture notes treat polynomial identity rings from both the combinatorial and structural points of view. The former studies the ideal of polynomial identities satisfied by a ring R. The latter studies the properties of rings which satisfy a polynomial identity.
The greater part of recent research in polynomial identity rings is about combinatorial questions, and the combinatorial part of the lecture notes gives an up-to-date account of recent research. On the other hand, the main structural results have been known for some time, and the emphasis there is on a presentation accessible to newcomers to the subject.
The intended audience is graduate students in algebra, and researchers in algebra, combinatorics and invariant theory.

Testo aggiuntivo

From the reviews:
“The book under review consists of two excellent monographs on the PI-theory by two leading researchers, V. Drensky and E. Formanek … In summary, both expositions are very well written, and the book is recommended both for graduate students and researchers.” (MATHEMATICAL REVIEWS)

Relazione

From the reviews:
"The book under review consists of two excellent monographs on the PI-theory by two leading researchers, V. Drensky and E. Formanek ... In summary, both expositions are very well written, and the book is recommended both for graduate students and researchers." (MATHEMATICAL REVIEWS)

Dettagli sul prodotto

Autori Vesselin Drensky, Edward Formanek
Editore Springer, Basel
 
Lingue Inglese
Formato Tascabile
Pubblicazione 01.07.2004
 
EAN 9783764371265
ISBN 978-3-7643-7126-5
Pagine 200
Peso 512 g
Illustrazioni VII, 200 p.
Serie Advanced Courses in Mathematics - CRM Barcelona
Categorie Scienze naturali, medicina, informatica, tecnica > Matematica > Aritmetica, algebra

B, Combinatorics, Mathematics and Statistics, Discrete Mathematics, Combinatorics & graph theory, Rings (Algebra), Associative rings, Associative Rings and Algebras

Recensioni dei clienti

Per questo articolo non c'è ancora nessuna recensione. Scrivi la prima recensione e aiuta gli altri utenti a scegliere.

Scrivi una recensione

Top o flop? Scrivi la tua recensione.

Per i messaggi a CeDe.ch si prega di utilizzare il modulo di contatto.

I campi contrassegnati da * sono obbligatori.

Inviando questo modulo si accetta la nostra dichiarazione protezione dati.