Fr. 139.20

Lectures on Analysis on Metric Spaces

Inglese · Copertina rigida

Spedizione di solito entro 3 a 5 settimane (il titolo viene procurato in modo speciale)

Descrizione

Ulteriori informazioni

Analysis in spaces with no a priori smooth structure has progressed to include concepts from the first order calculus. In particular, there have been important advances in understanding the infinitesimal versus global behavior of Lipschitz functions and quasiconformal mappings in rather general settings; abstract Sobolev space theories have been instrumental in this development. The purpose of this book is to communicate some of the recent work in the area while preparing the reader to study more substantial, related articles. The material can be roughly divided into three different types: classical, standard but sometimes with a new twist, and recent. The author first studies basic covering theorems and their applications to analysis in metric measure spaces. This is followed by a discussion on Sobolev spaces emphasizing principles that are valid in larger contexts. The last few sections of the book present a basic theory of quasisymmetric maps between metric spaces. Much of the material is relatively recent and appears for the first time in book format. There are plenty of exercises. The book is well suited for self-study, or as a text in a graduate course or seminar. The material is relevant to anyone who is interested in analysis and geometry in nonsmooth settings.

Sommario

1. Covering Theorems.- 2. Maximal Functions.- 3. Sobolev Spaces.- 4. Poincaré Inequality.- 5. Sobolev Spaces on Metric Spaces.- 6. Lipschitz Functions.- 7. Modulus of a Curve Family, Capacity, and Upper Gradients.- 8. Loewner Spaces.- 9. Loewner Spaces and Poincaré Inequalities.- 10. Quasisymmetric Maps: Basic Theory I.- 11. Quasisymmetric Maps: Basic Theory II.- 12. Quasisymmetric Embeddings of Metric Spaces in Euclidean Space.- 13. Existence of Doubling Measures.- 14. Doubling Measures and Quasisymmetric Maps.- 15. Conformal Gauges.- References.

Dettagli sul prodotto

Autori Juha Heinonen
Editore Springer, Berlin
 
Lingue Inglese
Formato Copertina rigida
Pubblicazione 01.01.2000
 
EAN 9780387951041
ISBN 978-0-387-95104-1
Pagine 141
Dimensioni 161 mm x 14 mm x 245 mm
Illustrazioni X, 141 p.
Serie Universitext
Categorie Scienze naturali, medicina, informatica, tecnica > Matematica > Analisi

C, Mathematics and Statistics, Real Functions, Functions of real variables

Recensioni dei clienti

Per questo articolo non c'è ancora nessuna recensione. Scrivi la prima recensione e aiuta gli altri utenti a scegliere.

Scrivi una recensione

Top o flop? Scrivi la tua recensione.

Per i messaggi a CeDe.ch si prega di utilizzare il modulo di contatto.

I campi contrassegnati da * sono obbligatori.

Inviando questo modulo si accetta la nostra dichiarazione protezione dati.