Fr. 58.50

Developing AI Applications - An Introduction

Inglese · Tascabile

Spedizione di solito entro 4 a 7 giorni lavorativi

Descrizione

Ulteriori informazioni

It's time to get practical about AI. Move past playing around with chatbots and plugging your data into others' applications-learn how to create your own! Walk through key AI methods like decision trees, convolutional layers, cluster analysis, and more. Get your hands dirty with simple no-code exercises and then apply that knowledge to more complex (but still beginner-friendly!) examples. With information on installing KNIME and using tools like AutoKeras, ChatGPT, and DALL-E, this guide will let you do more with AI!

Highlights include:

1) Python
2) KNIME
3) ChatGPT
4) DALL-E
5) Artificial neural networks (ANN)
6) Decision trees
7) Convolutional layers
8) Transfer learning
9) Anomaly detection
10) Text and image classification
11) Cluster analysis
12) Reinforcement learning

Sommario

1 ... Introduction ... 15

1.1 ... What Does This Book Offer? ... 15

1.2 ... What Is Artificial Intelligence? ... 17

1.3 ... The History of AI: A Brief Overview ... 18

1.4 ... Development Tools Used in This Book ... 20

2 ... Installation ... 25

2.1 ... Anaconda Distribution ... 25

2.2 ... KNIME ... 30

3 ... Artificial Neural Networks ... 39

3.1 ... Classification ... 40

3.2 ... The Recipe ... 41

3.3 ... Building ANNs ... 45

3.4 ... Structure of an Artificial Neuron ... 47

3.5 ... Feed Forward ... 48

3.6 ... Back Propagation ... 51

3.7 ... Updating the Weights ... 53

3.8 ... ANN for Classification ... 55

3.9 ... Hyperparameters and Overfitting ... 63

3.10 ... Dealing with Nonnumerical Data ... 65

3.11 ... Dealing with Data Gaps ... 67

3.12 ... Correlation versus Causality ... 69

3.13 ... Standardization of the Data ... 76

3.14 ... Regression ... 78

3.15 ... Deployment ... 81

3.16 ... Exercises ... 85

4 ... Decision Trees ... 89

4.1 ... Simple Decision Trees ... 90

4.2 ... Boosting ... 100

4.3 ... XGBoost Regressor ... 109

4.4 ... Deployment ... 110

4.5 ... Decision Trees Using Orange ... 111

4.6 ... Exercises ... 115

5 ... Convolutional Layers and Images ... 117

5.1 ... Simple Image Classification ... 118

5.2 ... Hyperparameter Optimization Using Early Stopping and KerasTuner ... 123

5.3 ... Convolutional Neural Network ... 128

5.4 ... Image Classification Using CIFAR-10 ... 134

5.5 ... Using Pretrained Networks ... 137

5.6 ... Exercises ... 140

6 ... Transfer Learning ... 141

6.1 ... How It Works ... 143

6.2 ... Exercises ... 150

7 ... Anomaly Detection ... 151

7.1 ... Unbalanced Data ... 152

7.2 ... Resampling ... 156

7.3 ... Autoencoders ... 158

7.4 ... Exercises ... 164

8 ... Text Classification ... 165

8.1 ... Embedding Layer ... 165

8.2 ... GlobalAveragePooling1D Layer ... 168

8.3 ... Text Vectorization ... 170

8.4 ... Analysis of the Relationships ... 173

8.5 ... Classifying Large Amounts of Data ... 177

8.6 ... Exercises ... 180

9 ... Cluster Analysis ... 181

9.1 ... Graphical Analysis of the Data ... 182

9.2 ... The k-Means Clustering Algorithm ... 186

9.3 ... The Finished Program ... 189

9.4 ... Exercises ... 192

10 ... AutoKeras ... 193

10.1 ... Classification ... 194

10.2 ... Regression ... 195

10.3 ... Image Classification ... 196

10.4 ... Text Classification ... 199

10.5 ... Exercises ... 202

11 ... Visual Programming Using KNIME ... 203

11.1 ... Simple ANNs ... 204

11.2 ... XGBoost ... 223

11.3 ... Image Classification Using a Pretrained Model ... 227

11.4 ... Transfer Learning ... 232

11.5 ... Autoencoder ... 237

11.6 ... Text Classification ... 245

11.7 ... AutoML ... 249

11.8 ... Cluster Analysis ... 253

11.9 ... Time Series Analysis ... 257

11.10 ... Text Generation ... 271

11.11 ... Further Information on KNIME ... 277

11.12 ... Exercises ... 278

12 ... Reinforcement Learning ... 281

12.1 ... Q-Learning ... 282

12.2 ... Python Knowledge Required for the Game ... 287

12.3 ... Trainings ... 292

12.4 ... Test ... 294

12.5 ... Outlook ... 295

12.6 ... Exercises ... 296

13 ... Genetic Algorithms ... 297

13.1 ... The Algorithm ... 298

13.2 ... Example of a Sorted List ... 301

13.3 ... Example of Equation Systems ... 304

13.4 ... Real-Life Sample Application ... 306

13.5 ... Exercises ... 309

14 ... ChatGPT and GPT-4 ... 311

14.1 ... Prompt Engineering ... 313

14.2 ... The ChatGPT Programming Interface ... 328

14.3 ... Exercise 1: Math Support ... 344

15 ... DALL-E and Successor Models ... 345

15.1 ... DALL-E 2 ... 345

15.2 ... DALL-E 3 ... 350

15.3 ... Programming Interface ... 352

15.4 ... Exercise 1: DALL-E API with Moderation ... 357

16 ... Outlook ... 359

... Appendices ... 361

A ... Exercise Solutions ... 363

A.1 ... Chapter 3 ... 363

A.2 ... Chapter 4 ... 368

A.3 ... Chapter 6 ... 371
A.4 ... Chapter 7 ... 373
A.5 ... Chapter 8 ... 376
A.6 ... Chapter 9 ... 379
A.7 ... Chapter 10 ... 381
A.8 ... Chapter 11 ... 384
A.9 ... Chapter 12 ... 389
A.10 ... Chapter 13 ... 390
A.11 ... Chapter 14 ... 392
A.12 ... Chapter 15 ... 393
B ... References ... 395

C ... The Author ... 397

... Index ... 399

Riassunto

It’s time to get practical about AI. Move past playing around with chatbots and plugging your data into others’ applications—learn how to create your own! Walk through key AI methods like decision trees, convolutional layers, cluster analysis, and more. Get your hands dirty with simple no-code exercises and then apply that knowledge to more complex (but still beginner-friendly!) examples. With information on installing KNIME and using tools like AutoKeras, ChatGPT, and DALL-E, this guide will let you do more with AI!

Highlights include:

1) Python
2) KNIME
3) ChatGPT
4) DALL-E
5) Artificial neural networks (ANN)
6) Decision trees
7) Convolutional layers
8) Transfer learning
9) Anomaly detection
10) Text and image classification
11) Cluster analysis
12) Reinforcement learning

Dettagli sul prodotto

Autori Metin Karatas
Editore Rheinwerk Verlag
 
Lingue Inglese
Formato Tascabile
Pubblicazione 01.11.2024
 
EAN 9781493226016
ISBN 978-1-4932-2601-6
Pagine 402
Categorie Scienze naturali, medicina, informatica, tecnica > Informatica, EDP > Linguaggi di programmazione

python, Artificial Intelligence (AI), AI applications

Recensioni dei clienti

Per questo articolo non c'è ancora nessuna recensione. Scrivi la prima recensione e aiuta gli altri utenti a scegliere.

Scrivi una recensione

Top o flop? Scrivi la tua recensione.

Per i messaggi a CeDe.ch si prega di utilizzare il modulo di contatto.

I campi contrassegnati da * sono obbligatori.

Inviando questo modulo si accetta la nostra dichiarazione protezione dati.