Fr. 109.00

Digital Forensics and Cyber Crime - 14th EAI International Conference, ICDF2C 2023, New York City, NY, USA, November 30, 2023, Proceedings, Part I

Inglese · Tascabile

Spedizione di solito entro 1 a 2 settimane (il titolo viene stampato sull'ordine)

Descrizione

Ulteriori informazioni

The two-volume set LNICST 570 and 571 constitutes the refereed post-conference proceedings of the 14th EAI International Conference on Digital Forensics and Cyber Crime, ICDF2C 2023, held in New York City, NY, USA, during November 30, 2023.

The 41 revised full papers presented in these proceedings were carefully reviewed and selected from 105 submissions. The papers are organized in the following topical sections:
Volume I:
Crime profile analysis and Fact checking, Information hiding and Machine learning.

Volume II: 
Password, Authentication and Cryptography, Vulnerabilities and Cybersecurity and forensics.

Sommario

Crime profile analysis and Fact checking.- A Canary in the Voting Booth: Attacks on a Virtual Voting Machine.- Catch Me if You Can: Analysis of Digital Devices  Artifacts Used in Murder Cases.- Enhancing Incident Management by an improved Understanding of Data Exfiltration: Definition, Evaluation, Review.- Identify Users on Dating Applications: A Forensic Perspective.- Removing Noise (Opinion Messages) For Fake News De-tection In Discussion Forum Using BERT Model.- Retruth Reconnaissance: A Digital Forensic Analysis of Truth Social.- Information hiding.- A Multi-Carrier Information Hiding Algorithm Based on Dual 3D Model Spectrum Analysis.- A Multi-Carrier Information Hiding Algorithm Based on Layered Compression of 3D Point Cloud Model.- Point cloud model information hiding algorithm based on multi-scale transformation and composite operator.- An Information Hiding Algorithm Baed on Multi-Carrier Fusion State Partitioning of 3D Models.- Machine learning.- CCBA: Code Poisoning-based Clean-Label Covert Backdoor Attack against DNNs.- Decoding HDF5: Machine Learning File Forensics and Data Injection.- DEML: Data-enhanced Meta-Learning Method for IoT APT Traffic Detection.- Finding Forensic Artefacts in Long-term Frequency Band Occupancy Measurements using Statistics and Machine Learning.- IoT Malicious Traffic Detection based on Federated Learning.- Persistent Clean-label Backdoor on Graph-based Semi-supervised Cybercrime Detection.- Backdoor Learning on Siamese Networks using Physical Triggers: FaceNet as a Case Study.- Research on Feature Selection Algorithm of Energy Curve.- Power Analysis Attack Based on GA-based Ensemble Learning.

Dettagli sul prodotto

Con la collaborazione di Sanjay Goel (Editore), Paulo Roberto Nunes de Souza (Editore), Roberto Nunes de Souza (Editore)
Editore Springer, Berlin
 
Lingue Inglese
Formato Tascabile
Pubblicazione 01.06.2024
 
EAN 9783031565793
ISBN 978-3-0-3156579-3
Pagine 325
Dimensioni 155 mm x 18 mm x 235 mm
Peso 523 g
Illustrazioni XV, 325 p. 129 illus., 101 illus. in color.
Serie Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering
Categoria Scienze naturali, medicina, informatica, tecnica > Informatica, EDP > Informatica

Recensioni dei clienti

Per questo articolo non c'è ancora nessuna recensione. Scrivi la prima recensione e aiuta gli altri utenti a scegliere.

Scrivi una recensione

Top o flop? Scrivi la tua recensione.

Per i messaggi a CeDe.ch si prega di utilizzare il modulo di contatto.

I campi contrassegnati da * sono obbligatori.

Inviando questo modulo si accetta la nostra dichiarazione protezione dati.