Fr. 198.00

Statistical Properties of Undulator Radiation - Classical and Quantum Effects

Inglese · Tascabile

Spedizione di solito entro 1 a 2 settimane (il titolo viene stampato sull'ordine)

Descrizione

Ulteriori informazioni

This thesis presents significant advances in the understanding of the statistical properties of undulator radiation via two experiments carried out in the Integrable Optics Test Accelerator (IOTA) storage ring at Fermilab. The first experiment studied the turn-to-turn fluctuations in the power of the radiation generated by an electron bunch. The magnitude of these fluctuations depends on the 6D phase-space distribution of the electron bunch. The author presents the most complete theoretical description of this effect to date, and shows that it can be used to measure some electron bunch parameters (e.g. its size and divergence). Remarkably, the performance of this technique improves for smaller bunches and shorter radiation wavelengths and it may, therefore, be particularly beneficial for existing state-of-the-art and next-generation low-emittance high-brightness x-ray synchrotron light sources. In the second experiment, a single electron was stored in the ring, emitting a photon only once per several hundred turns. In this regime, any classical interference-related collective effects were eliminated, and the quantum fluctuations could be studied in detail to search for possible deviations from the expected Poissonian photon statistics. In addition, the photocount arrival times were used to track the longitudinal motion of a single electron and to compare it with simulations. This served as an independent measurement of several dynamical parameters of the storage ring.

Sommario

Chapter 1. Introduction.- Chapter 2. Derivation of statistical properties of undulator radiation.- Chapter 3. Measurements with a bunch of electrons in the iota ring.- Chapter 4. Measurements with a single electron in the iota ring.- Chapter 5. Conclusions.

Info autore










Ihar received his bachelor's degree in physics from the Belarusian State University in 2017. He completed his PhD program in particle accelerator physics at the University of Chicago in 2021. His thesis research was carried out at Fermilab's Integrable Optics Test Accelerator storage ring, where he studied the statistical properties of the undulator radiation generated by a bunch of electrons and by a single electron circulating in the ring. Currently, Ihar is an assistant physicist at the Advanced Photon Source in Argonne National Laboratory. His research is focused on applications of machine learning for accelerator tuning, control, and anomaly detection.

Dettagli sul prodotto

Autori Ihar Lobach
Editore Springer, Berlin
 
Lingue Inglese
Formato Tascabile
Pubblicazione 10.02.2024
 
EAN 9783031232756
ISBN 978-3-0-3123275-6
Pagine 101
Dimensioni 155 mm x 6 mm x 235 mm
Illustrazioni XII, 101 p. 43 illus., 41 illus. in color.
Serie Springer Theses
Categoria Scienze naturali, medicina, informatica, tecnica > Fisica, astronomia > Fisica atomica, fisica nucleare

Recensioni dei clienti

Per questo articolo non c'è ancora nessuna recensione. Scrivi la prima recensione e aiuta gli altri utenti a scegliere.

Scrivi una recensione

Top o flop? Scrivi la tua recensione.

Per i messaggi a CeDe.ch si prega di utilizzare il modulo di contatto.

I campi contrassegnati da * sono obbligatori.

Inviando questo modulo si accetta la nostra dichiarazione protezione dati.