Fr. 39.50

Coefficient of Variation and Machine Learning Applications

Inglese · Tascabile

Spedizione di solito entro 1 a 3 settimane (non disponibile a breve termine)

Descrizione

Ulteriori informazioni










Coefficient of Variation (CV) is a unit free index indicating the consistency of the data associated with a real-world process and is simple to mold into computational paradigms. This book provides necessary exposure of computational strategies, properties of CV and extracting the metadata leading to efficient knowledge representation. It also compiles representational and classification strategies based on the CV through illustrative explanations. The potential nature of CV in the context of contemporary Machine Learning strategies and the Big Data paradigms is demonstrated through selected applications. Overall, this book explains statistical parameters and knowledge representation models.

Sommario

1. Introduction to Statistical Dispersion 2. Coefficient of Variation 3. Coefficient of Variation Computational Strategies 4. Coefficient of Variation Based Image Representation 5. Coefficient of Variation based Decision Tree (CvDT) 6. Some Applications.

Info autore

K. Hima Bindu, Raghava Morusupalli, Nilanjan Dey, C. Raghavendra Rao

Riassunto

This book explains computational strategies, properties of Coefficient of Variation (CV) and related metadata extraction. It includes representational/classification strategies through illustrative explanations. CV in context of contemporary Machine Learning strategies and Big Data paradigms is explained through selected applications.

Recensioni dei clienti

Per questo articolo non c'è ancora nessuna recensione. Scrivi la prima recensione e aiuta gli altri utenti a scegliere.

Scrivi una recensione

Top o flop? Scrivi la tua recensione.

Per i messaggi a CeDe.ch si prega di utilizzare il modulo di contatto.

I campi contrassegnati da * sono obbligatori.

Inviando questo modulo si accetta la nostra dichiarazione protezione dati.