Fr. 53.50

A Groupoid Approach to Boundary Value Problems - DE

Inglese · Tascabile

Spedizione di solito entro 2 a 3 settimane (il titolo viene stampato sull'ordine)

Descrizione

Ulteriori informazioni

The method of layer potentials is one of the classical approaches to solving boundary value problems for elliptic differential equations. This method reduces the original problem to that of inverting an operator of the form '1/2+K' on appropriate function spaces on the boundary. If the boundary is smooth, then the double-layer potential operator K is compact; hence, '1/2+K' is Fredholm of index zero. However, if the boundary is non-smooth, the operator K is no longer compact. This book delves into the method of layer potentials on certain domains with singularities from a groupoid perspective. Through a desingularization process and integration of Lie algebroids, we can construct a Lie groupoid that encodes the geometry and singularities of the domain. Subsequently, we can identify the operator K with an invariant family of that Lie groupoid. By applying techniques from C*-algebras and Lie groupoids, we can establish the Fredholm property of the operator '1/2+K'.

Info autore










Yu Qiao (1980, Xi'an, China), completed his undergraduate studies at the University of Science and Technology of China in 2003. He obtained his Ph.D. degree in mathematics under the supervision of Prof. Victor Nistor and Prof. John Roe at Pennsylvania State University in 2011. Since then, he has been working at Shaanxi Normal University, China.

Dettagli sul prodotto

Autori Yu Qiao
Editore LAP Lambert Academic Publishing
 
Lingue Inglese
Formato Tascabile
Pubblicazione 14.09.2023
 
EAN 9786206784555
ISBN 9786206784555
Pagine 100
Categoria Scienze naturali, medicina, informatica, tecnica > Matematica > Altro

Recensioni dei clienti

Per questo articolo non c'è ancora nessuna recensione. Scrivi la prima recensione e aiuta gli altri utenti a scegliere.

Scrivi una recensione

Top o flop? Scrivi la tua recensione.

Per i messaggi a CeDe.ch si prega di utilizzare il modulo di contatto.

I campi contrassegnati da * sono obbligatori.

Inviando questo modulo si accetta la nostra dichiarazione protezione dati.