Fr. 69.00

Linear Algebra - From the Beginnings to the Jordan Normal Forms

Inglese · Tascabile

Spedizione di solito entro 1 a 2 settimane (il titolo viene stampato sull'ordine)

Descrizione

Ulteriori informazioni

The purpose of this book is to explain linear algebra clearly for beginners. In doing so, the author states and explains somewhat advanced topics such as Hermitian products and Jordan normal forms. Starting from the definition of matrices, it is made clear with examples that matrices and matrix operation are abstractions of tables and operations of tables. The author also maintains that systems of linear equations are the starting point of linear algebra, and linear algebra and linear equations are closely connected. The solutions to systems of linear equations are found by solving matrix equations in the row-reduction of matrices, equivalent to the Gauss elimination method of solving systems of linear equations. The row-reductions play important roles in calculation in this book. To calculate row-reductions of matrices, the matrices are arranged vertically, which is seldom seen but is convenient for calculation. Regular matrices and determinants of matrices are defined and explained. Furthermore, the resultants of polynomials are discussed as an application of determinants. Next, abstract vector spaces over a field K are defined. In the book, however, mainly vector spaces are considered over the real number field and the complex number field, in case readers are not familiar with abstract fields. Linear mappings and linear transformations of vector spaces and representation matrices of linear mappings are defined, and the characteristic polynomials and minimal polynomials are explained. The diagonalizations of linear transformations and square matrices are discussed, and inner products are defined on vector spaces over the real number field. Real symmetric matrices are considered as well, with discussion of quadratic forms. Next, there are definitions of Hermitian inner products. Hermitian transformations, unitary transformations, normal transformations and the spectral resolution of normal transformations and matrices are explained. The book ends withJordan normal forms. It is shown that any transformations of vector spaces over the complex number field have matrices of Jordan normal forms as representation matrices.

Sommario

Preface.- 1. Matrices.- 2. Linear Equations.- 3. Determinants.- 4. Vector Spaces.- 5. Linear Mappings.- 6. Inner Product Spaces.- 7. Hermitian Inner Product Spaces.- 8. Jordan Normal Forms.-Notation.- Answers to Exercises.- References.- Index of Theorems.- Index.

Info autore










The author is currently Professor Emeritus at Hokkaido University. He is also the author of Modular Forms (published by Springer) in 1989. 

Dettagli sul prodotto

Autori Toshitsune Miyake
Editore Springer, Berlin
 
Lingue Inglese
Formato Tascabile
Pubblicazione 01.09.2023
 
EAN 9789811669965
ISBN 978-981-1669-96-5
Pagine 362
Dimensioni 155 mm x 20 mm x 235 mm
Illustrazioni XVII, 362 p. 15 illus., 2 illus. in color.
Categoria Scienze naturali, medicina, informatica, tecnica > Matematica > Aritmetica, algebra

Recensioni dei clienti

Per questo articolo non c'è ancora nessuna recensione. Scrivi la prima recensione e aiuta gli altri utenti a scegliere.

Scrivi una recensione

Top o flop? Scrivi la tua recensione.

Per i messaggi a CeDe.ch si prega di utilizzare il modulo di contatto.

I campi contrassegnati da * sono obbligatori.

Inviando questo modulo si accetta la nostra dichiarazione protezione dati.