Fr. 168.00

Stochastic Neutron Transport - And Non-Local Branching Markov Processes

Inglese · Copertina rigida

Spedizione di solito entro 2 a 3 settimane (il titolo viene stampato sull'ordine)

Descrizione

Ulteriori informazioni

This monograph highlights the connection between the theory of neutron transport and the theory of non-local branching processes. By detailing this frequently overlooked relationship, the authors provide readers an entry point into several active areas, particularly applications related to general radiation transport. Cutting-edge research published in recent years is collected here for convenient reference. Organized into two parts, the first offers a modern perspective on the relationship between the neutron branching process (NBP) and the neutron transport equation (NTE), as well as some of the core results concerning the growth and spread of mass of the NBP. The second part generalizes some of the theory put forward in the first, offering proofs in a broader context in order to show why NBPs are as malleable as they appear to be. Stochastic Neutron Transport will be a valuable resource for probabilists, and may also be of interest to numerical analysts and engineersin the field of nuclear research.

Sommario

Part I Neutron Transport Theory.- Classical Neutron Transport Theory.- Some background Markov process theory.- Stochastic Representation of the Neutron Transport Equation.- Many-to-one, Perron-Frobenius and criticality.- Pal-Bell equation and moment growth.- Martingales and path decompositions.- Discrete evolution.- Part II General branching Markov processes.- A general family of branching Markov processes.- Moments.- Survival at criticality.- Spines and skeletons.- Martingale convergence and laws of large numbers.

Info autore










Emma Horton completed her PhD in 2019 at the University of Bath, where she also completed her undergraduate and masters studies. Following her PhD, she became a postdoc at the IECL, Université de Lorraine. Thereafter, she became chargée de recherche with the project-team ASTRAL, INRIA. She spent over six months as a visiting researcher to the University of Melbourne in 2023 and is currently an Assistant Professor at the University of Warwick, Department of Statistics.
Andreas E. Kyprianou was educated at the University of Oxford and University of Sheffield and is currently a professor of probability theory at the University of Warwick. He has spent almost 30 years working on the theory and application of path-discontinuous stochastic processes and has over 130 publications, including three graduate textbooks. Before moving to Warwick, Andreas spent a large portion of his career at the University of Bath, Department of Mathematical Sciences. Prior to that, he heldvarious positions at the University of Edinburgh, Heriot Watt University, The London School of Economics, as well as working for nearly two years in the oil industry. 




Relazione

Although the field of stochastic branching processes has undergone important developments over the past decades, relatively little attention has been given to its important applications to neutron transport modelling. The book fills this gap in the literature, and additionally provides strong foundations on Markov branching processes and their applications. (Nicolas Privault, Mathematical Reviews, July, 2025)

Dettagli sul prodotto

Autori Emma Horton, Andreas Kyprianou, Andreas E Kyprianou, Andreas E. Kyprianou
Editore Springer, Berlin
 
Lingue Inglese
Formato Copertina rigida
Pubblicazione 03.12.2023
 
EAN 9783031395451
ISBN 978-3-0-3139545-1
Pagine 272
Dimensioni 155 mm x 19 mm x 235 mm
Illustrazioni XV, 272 p. 10 illus., 4 illus. in color.
Serie Probability and its Applications
Categoria Scienze naturali, medicina, informatica, tecnica > Matematica > Teoria delle probabilità, stocastica, statistica matematica

Recensioni dei clienti

Per questo articolo non c'è ancora nessuna recensione. Scrivi la prima recensione e aiuta gli altri utenti a scegliere.

Scrivi una recensione

Top o flop? Scrivi la tua recensione.

Per i messaggi a CeDe.ch si prega di utilizzare il modulo di contatto.

I campi contrassegnati da * sono obbligatori.

Inviando questo modulo si accetta la nostra dichiarazione protezione dati.