Fr. 190.00

Temperley-Lieb Recoupling Theory and Invariants of 3-Manifolds

Inglese · Tascabile

Spedizione di solito entro 3 a 5 settimane

Descrizione

Ulteriori informazioni










This book offers a self-contained account of the 3-manifold invariants arising from the original Jones polynomial. These are the Witten-Reshetikhin-Turaev and the Turaev-Viro invariants. Starting from the Kauffman bracket model for the Jones polynomial and the diagrammatic Temperley-Lieb algebra, higher-order polynomial invariants of links are constructed and combined to form the 3-manifold invariants. The methods in this book are based on a recoupling theory for the Temperley-Lieb algebra. This recoupling theory is a q-deformation of the SU(2) spin networks of Roger Penrose.

The recoupling theory is developed in a purely combinatorial and elementary manner. Calculations are based on a reformulation of the Kirillov-Reshetikhin shadow world, leading to expressions for all the invariants in terms of state summations on 2-cell complexes. Extensive tables of the invariants are included. Manifolds in these tables are recognized by surgery presentations and by means of 3-gems (graph encoded 3-manifolds) in an approach pioneered by Sostenes Lins. The appendices include information about gems, examples of distinct manifolds with the same invariants, and applications to the Turaev-Viro invariant and to the Crane-Yetter invariant of 4-manifolds.

Sommario










1Introduction1
2Bracket Polynomial, Temperley-Lieb Algebra5
3Jones-Wenzl Projectors13
4The 3-Vertex22
5Properties of Projectors and 3-Vertices36
6[theta]--Evaluations45
7Recoupling Theory Via Temperley-Lieb Algebra60
8Chromatic Evaluations and the Tetrahedron76
9A Summary of Recoupling Theory93
10A 3-Manifold Invariant by State Summation102
11The Shadow World114
12The Witten-Reshetikhin-Turaev Invariant129
13Blinks [actual symbol not reproducible] 3-Gems: Recognizing 3-Manifolds160
14Tables of Quantum Invariants185
Bibliography290
Index295


Info autore










Louis H. Kauffman is Professor of Mathematics at the University of Illinois, Chicago. Sostenes Lins is Professor of Mathematics at the Universidade Federal de Pernambuco in Recife, Brazil.

Riassunto

Offers an account of the 3-manifold invariants arising from the original Jones polynomial. This book contains the methods that are based on a recoupling theory for the Temperley-Lieb algebra. The appendices include information about gems, examples of distinct manifolds with the same invariants, and applications to the Turaev-Viro invariant.

Testo aggiuntivo

"This extremely useful volume provides a self-contained treatment of the construction of 3-manifold invariants directly from the combinatorics of the Jones polynomial in Kauffman's bracket formulation."

Dettagli sul prodotto

Autori Louis Kauffman, Louis H. Kauffman, Louis H. Kaufmann, Sostenes Lins, Lins Sostenes
Con la collaborazione di Phillip Griffiths (Editore), John N. Lins (Editore)
Editore University Presses
 
Lingue Inglese
Formato Tascabile
Pubblicazione 25.07.1994
 
EAN 9780691036403
ISBN 978-0-691-03640-3
Pagine 312
Peso 425 g
Illustrazioni 1200 illus.
Serie Annals of Mathematics Studies
Annals of Mathematics Studies
Categorie Scienze naturali, medicina, informatica, tecnica > Matematica > Altro

Algebra, MATHEMATICS / Algebra / General, MATHEMATICS / Topology, Algebraic Topology

Recensioni dei clienti

Per questo articolo non c'è ancora nessuna recensione. Scrivi la prima recensione e aiuta gli altri utenti a scegliere.

Scrivi una recensione

Top o flop? Scrivi la tua recensione.

Per i messaggi a CeDe.ch si prega di utilizzare il modulo di contatto.

I campi contrassegnati da * sono obbligatori.

Inviando questo modulo si accetta la nostra dichiarazione protezione dati.