Fr. 88.00

Solvability and Qualitative Properties - of linear Differential-Algebraic Operators using Variational approach with Illustrations. DE

Inglese · Tascabile

Spedizione di solito entro 2 a 3 settimane (il titolo viene stampato sull'ordine)

Descrizione

Ulteriori informazioni

This work studied some classes of linear time-varying and constant coefficients composed of descriptor operator equations with consistent initial conditions as well as consistent boundary conditions using suitable Hilbert spaces. The composed descriptor operator is standing for coupled pair of differential-algebraic operator equations together with the consistent initial operator or consistent boundary operator defined in this work on reflexive Cartesian Hilbert spaces.We have proved that this composed descriptor operator is extendable to closed bounded densely defined operator, and has adjoint as well as second adjoint with natural extension property. Due to the importance of the symmetry of this operator for solvability, the symmetry has been also discussed and developed with respect to Cartesian bilinear form using the functional (Variational) approach. This approach is based on finding a suitable functional form whose critical point is the solution of the proposed problem (composed descriptor operator) and the solution of the proposed problem is a critical point of the obtained Variational functional.

Dettagli sul prodotto

Autori Hams M. Al-Helli, Radhi Ali Zaboon
Editore LAP Lambert Academic Publishing
 
Lingue Inglese
Formato Tascabile
Pubblicazione 03.11.2022
 
EAN 9786204986715
ISBN 9786204986715
Pagine 140
Categoria Scienze naturali, medicina, informatica, tecnica > Matematica > Aritmetica, algebra

Recensioni dei clienti

Per questo articolo non c'è ancora nessuna recensione. Scrivi la prima recensione e aiuta gli altri utenti a scegliere.

Scrivi una recensione

Top o flop? Scrivi la tua recensione.

Per i messaggi a CeDe.ch si prega di utilizzare il modulo di contatto.

I campi contrassegnati da * sono obbligatori.

Inviando questo modulo si accetta la nostra dichiarazione protezione dati.