Fr. 70.00

Rings Close to Regular

Inglese · Copertina rigida

Spedizione di solito entro 6 a 7 settimane

Descrizione

Ulteriori informazioni

Preface All rings are assumed to be associative and (except for nilrings and some stipulated cases) to have nonzero identity elements. A ring A is said to be regular if for every element a E A, there exists an element b E A with a = aba. Regular rings are well studied. For example, [163] and [350] are devoted to regular rings. A ring A is said to be tr-regular if for every element a E A, there is an element n b E A such that an = anba for some positive integer n. A ring A is said to be strongly tr-regular if for every a E A, there is a positive integer n with n 1 n an E a + An Aa +1. It is proved in [128] that A is a strongly tr-regular ring if and only if for every element a E A, there is a positive integer m with m 1 am E a + A. Every strongly tr-regular ring is tr-regular [38]. If F is a division ring and M is a right vector F-space with infinite basis {ei}~l' then End(MF) is a regular (and tr-regular) ring that is not strongly tr-regular. The factor ring of the ring of integers with respect to the ideal generated by the integer 4 is a strongly tr-regular ring that is not regular.

Sommario

1 Some Basic Facts of Ring Theory.- 2 Regular and Strongly Regular Rings.- 3 Rings of Bounded Index and I0-rings.- 4 Semiregular and Weakly Regular Rings.- 5 Max Rings and ?-regular Rings.- 6 Exchange Rings and Modules.- 7 Separative Exchange Rings.

Info autore

Askar Tuganbaev received his Ph.D. at the Moscow State University in 1978 and has been a professor at Moscow Power Engineering Institute (Technological University) since 1978. He is the author of three other monographs on ring theory and has written numerous articles on ring theory.

Riassunto

Preface All rings are assumed to be associative and (except for nilrings and some stipulated cases) to have nonzero identity elements. A ring A is said to be regular if for every element a E A, there exists an element b E A with a = aba. Regular rings are well studied. For example, [163] and [350] are devoted to regular rings. A ring A is said to be tr-regular if for every element a E A, there is an element n b E A such that an = anba for some positive integer n. A ring A is said to be strongly tr-regular if for every a E A, there is a positive integer n with n 1 n an E a + An Aa +1. It is proved in [128] that A is a strongly tr-regular ring if and only if for every element a E A, there is a positive integer m with m 1 am E a + A. Every strongly tr-regular ring is tr-regular [38]. If F is a division ring and M is a right vector F-space with infinite basis {ei}~l' then End(MF) is a regular (and tr-regular) ring that is not strongly tr-regular. The factor ring of the ring of integers with respect to the ideal generated by the integer 4 is a strongly tr-regular ring that is not regular.

Testo aggiuntivo

From the reviews:

"This is the first monograph on rings close to von Neumann regular rings. … The book will appeal to readers from beginners to researchers and specialists in algebra; it concludes with an extensive bibliography." (Xue Weimin, Zentralblatt MATH, Vol. 1120 (22), 2007)

Relazione

From the reviews:

"This is the first monograph on rings close to von Neumann regular rings. ... The book will appeal to readers from beginners to researchers and specialists in algebra; it concludes with an extensive bibliography." (Xue Weimin, Zentralblatt MATH, Vol. 1120 (22), 2007)

Dettagli sul prodotto

Autori A a Tuganbaev, A. A. Tuganbaev, A.A. Tuganbaev, Askar Tuganbaev
Editore Springer Netherlands
 
Lingue Inglese
Formato Copertina rigida
Pubblicazione 30.06.2009
 
EAN 9781402008511
ISBN 978-1-4020-0851-1
Pagine 350
Peso 694 g
Illustrazioni XII, 350 p.
Serie Mathematics and Its Applications
Mathematics and Its Applications
Categorie Scienze naturali, medicina, informatica, tecnica > Matematica > Aritmetica, algebra

Algebra, Ring, C, Mathematics and Statistics, maxima, Associative Rings and Algebras, Proof, Maximum, Associative algebras, eXist, ring theory

Recensioni dei clienti

Per questo articolo non c'è ancora nessuna recensione. Scrivi la prima recensione e aiuta gli altri utenti a scegliere.

Scrivi una recensione

Top o flop? Scrivi la tua recensione.

Per i messaggi a CeDe.ch si prega di utilizzare il modulo di contatto.

I campi contrassegnati da * sono obbligatori.

Inviando questo modulo si accetta la nostra dichiarazione protezione dati.