Fr. 215.00

Dissipation and Control in Microscopic Nonequilibrium Systems

Inglese · Tascabile

Spedizione di solito entro 1 a 2 settimane (il titolo viene stampato sull'ordine)

Descrizione

Ulteriori informazioni

This thesis establishes a multifaceted extension of the deterministic control framework that has been a workhorse of nonequilibrium statistical mechanics, to stochastic, discrete, and autonomous control mechanisms. This facilitates the application of ideas from stochastic thermodynamics to the understanding of molecular machines in nanotechnology and in living things. It also gives a scale on which to evaluate the nonequilibrium energetic efficiency of molecular machines, guidelines for designing effective synthetic machines, and a perspective on the engineering principles that govern efficient microscopic energy transduction far from equilibrium. The thesis also documents the author's design, analysis, and interpretation of the first experimental demonstration of the utility of this generally applicable method for designing energetically-efficient control in biomolecules. Protocols designed using this framework systematically reduced dissipation, when compared to naive protocols, in DNA hairpins across a wide range of experimental unfolding speeds and between sequences with wildly different physical characteristics.

Sommario

Chapter 1. Introduction.- Chapter 2. Theoretical background.- Chapter 3. DNA hairpins I: Calculating the generalized friction.- Chapter 4. DNA Hairpins II: reducing dissipation in nonequilibrium protocols.- Chapter 5. DNA Hairpins III: robustness, variability, and conclusions.- Chapter 6. Stochastic control in microscopic nonequilibrium systems.- Chapter 7. Optimal discrete control: minimizing dissipation in discretely driven systems.- Chapter 8. On dissipation bounds: discrete stochastic control of nonequilibrium systems.- Chapter 9. Free energy transduction within autonomous systems.- Chapter 10. Hidden excess power and autonomous Maxwell demons in strongly coupled nonequilibrium systems.- Chapter 11. Conclusions and outlook.

Info autore










Dr. Steven Large grew up in Victoria, Canada, and received his undergraduate honours degree in Nanoscience in 2015 from the University of Guelph in Ontario, Canada. He then completed his PhD in Physics at Simon Fraser University in Vancouver, Canada, defending his thesis in December 2020 under the supervision of Prof. David Sivak. Currently, Dr. Large works as a Data Scientist with Viewpoint Investment Partners, in Calgary, Alberta, using quantitative analysis methods and machine learning techniques to develop robust long-term financial investment strategies.


Dettagli sul prodotto

Autori Steven J Large, Steven J. Large
Editore Springer, Berlin
 
Lingue Inglese
Formato Tascabile
Pubblicazione 25.10.2022
 
EAN 9783030858278
ISBN 978-3-0-3085827-8
Pagine 236
Dimensioni 155 mm x 14 mm x 235 mm
Illustrazioni XVII, 236 p. 49 illus., 42 illus. in color.
Serie Springer Theses
Categoria Scienze naturali, medicina, informatica, tecnica > Fisica, astronomia > Termodinamica

Recensioni dei clienti

Per questo articolo non c'è ancora nessuna recensione. Scrivi la prima recensione e aiuta gli altri utenti a scegliere.

Scrivi una recensione

Top o flop? Scrivi la tua recensione.

Per i messaggi a CeDe.ch si prega di utilizzare il modulo di contatto.

I campi contrassegnati da * sono obbligatori.

Inviando questo modulo si accetta la nostra dichiarazione protezione dati.