Fr. 98.50

The Structure of Spherical Buildings

Inglese · Copertina rigida

Spedizione di solito entro 2 a 3 settimane (il titolo viene stampato sull'ordine)

Descrizione

Ulteriori informazioni

Zusatztext "Richard M. Weiss's book is an extremely valuable addition to the literature." ---Kenneth S. Brown! Bulletin of the American Mathematical Society Informationen zum Autor Richard M. Weiss is William Walker Professor at Tufts University. He is the coauthor, with Jacques Tits, of Moufang Polygons . Klappentext This book provides a clear and authoritative introduction to the theory of buildings, a topic of central importance to mathematicians interested in the geometric aspects of group theory. Its detailed presentation makes it suitable for graduate students as well as specialists. Richard Weiss begins with an introduction to Coxeter groups and goes on to present basic properties of arbitrary buildings before specializing to the spherical case. Buildings are described throughout in the language of graph theory. The Structure of Spherical Buildings includes a reworking of the proof of Jacques Tits's Theorem 4.1.2. upon which Tits's classification of thick irreducible spherical buildings of rank at least three is based. In fact, this is the first book to include a proof of this famous result since its original publication. Theorem 4.1.2 is followed by a systematic study of the structure of spherical buildings and their automorphism groups based on the Moufang property. Moufang buildings of rank two were recently classified by Tits and Weiss. The last chapter provides an overview of the classification of spherical buildings, one that reflects these and other important developments. Zusammenfassung This book provides a clear and authoritative introduction to the theory of buildings, a topic of central importance to mathematicians interested in the geometric aspects of group theory. Its detailed presentation makes it suitable for graduate students as well as specialists. Richard Weiss begins with an introduction to Coxeter groups and goes on to present basic properties of arbitrary buildings before specializing to the spherical case. Buildings are described throughout in the language of graph theory. The Structure of Spherical Buildings includes a reworking of the proof of Jacques Tits's Theorem 4.1.2. upon which Tits's classification of thick irreducible spherical buildings of rank at least three is based. In fact, this is the first book to include a proof of this famous result since its original publication. Theorem 4.1.2 is followed by a systematic study of the structure of spherical buildings and their automorphism groups based on the Moufang property. Moufang buildings of rank two were recently classified by Tits and Weiss. The last chapter provides an overview of the classification of spherical buildings, one that reflects these and other important developments. Inhaltsverzeichnis Preface ix Chapter 1. Chamber Systems 1 Chapter 2. Coxeter Groups 9 Chapter 3. Roots 17 Chapter 4. Reduced Words 27 Chapter 5. Opposites 33 Chapter 6. 2-Interiors 41 Chapter 7. Buildings 47 Chapter 8. Apartments 61 Chapter 9. Spherical Buildings 73 Chapter 10. Extensions of Isometries 81 Chapter 11. The Moufang Property 91 Chapter 12. Root Group Labelings 117 References 131 Index 133 ...

Dettagli sul prodotto

Autori Richard Weiß, Richard M. Weiss, Weiss Richard M.
Editore Princeton University Press
 
Lingue Inglese
Formato Copertina rigida
Pubblicazione 05.01.2004
 
EAN 9780691117331
ISBN 978-0-691-11733-1
Pagine 160
Dimensioni 161 mm x 241 mm x 16 mm
Categorie Scienze sociali, diritto, economia > Economia > Altro
Scienze umane, arte, musica > Arte

ARCHITECTURE / Design, Drafting, Drawing & Presentation, Architectural structure & design, Architectural structure and design

Recensioni dei clienti

Per questo articolo non c'è ancora nessuna recensione. Scrivi la prima recensione e aiuta gli altri utenti a scegliere.

Scrivi una recensione

Top o flop? Scrivi la tua recensione.

Per i messaggi a CeDe.ch si prega di utilizzare il modulo di contatto.

I campi contrassegnati da * sono obbligatori.

Inviando questo modulo si accetta la nostra dichiarazione protezione dati.