Fr. 83.00

A Course in Arithmetic

Inglese · Copertina rigida

Spedizione di solito entro 2 a 3 settimane (il titolo viene stampato sull'ordine)

Descrizione

Ulteriori informazioni

This book is divided into two parts. The first one is purely algebraic. Its objective is the classification of quadratic forms over the field of rational numbers (Hasse-Minkowski theorem). It is achieved in Chapter IV. The first three chapters contain some preliminaries: quadratic reciprocity law, p-adic fields, Hilbert symbols. Chapter V applies the preceding results to integral quadratic forms of discriminant ± I. These forms occur in various questions: modular functions, differential topology, finite groups. The second part (Chapters VI and VII) uses "analytic" methods (holomor phic functions). Chapter VI gives the proof of the "theorem on arithmetic progressions" due to Dirichlet; this theorem is used at a critical point in the first part (Chapter Ill, no. 2.2). Chapter VII deals with modular forms, and in particular, with theta functions. Some of the quadratic forms of Chapter V reappear here. The two parts correspond to lectures given in 1962 and 1964 to second year students atthe Ecole Normale Superieure. A redaction of these lectures in the form of duplicated notes, was made by J.-J. Sansuc (Chapters I-IV) and J.-P. Ramis and G. Ruget (Chapters VI-VII). They were very useful to me; I extend here my gratitude to their authors.

Sommario

Contents: Algebraic Methods: Finite fields. p-adic fields. Hilbert symbol. Quadratic forms over Qp, and over Q. Integral quadratic forms with discriminant -1.- Analytic Methods: The theorem on arithmetic progressions. Modular forms.- Bibliography.- Indices.

Info autore

Professor Jean-Pierre Serre ist ein renommierter französischer Mathematiker am College de France in Paris.

Riassunto

Its objective is the classification of quadratic forms over the field of rational numbers (Hasse-Minkowski theorem). Chapter V applies the preceding results to integral quadratic forms of discriminant ± I. Chapter VII deals with modular forms, and in particular, with theta functions. Some of the quadratic forms of Chapter V reappear here.

Relazione

"The book is a showcase of how some results in classical number theory (the Arithmetic of the title) can be derived quickly using abstract algebra. ... There are a reasonable number of worked examples, and they are very well-chosen. ... this book will expand your horizons, but you should already have a good knowledge of algebra and of classical number theory before you begin." (Allen Stenger, MAA Reviews, maa.org, July, 2016)

Dettagli sul prodotto

Autori Jean-Pierre Serre, J-P Serre, J-P. Serre
Editore Springer, Berlin
 
Lingue Inglese
Formato Copertina rigida
Pubblicazione 01.01.2007
 
EAN 9780387900407
ISBN 978-0-387-90040-7
Pagine 119
Dimensioni 157 mm x 13 mm x 240 mm
Peso 344 g
Illustrazioni IX, 119 p.
Serie Graduate Texts in Mathematics
Graduate Texts in Mathematics
Categoria Scienze naturali, medicina, informatica, tecnica > Matematica > Aritmetica, algebra

Recensioni dei clienti

Per questo articolo non c'è ancora nessuna recensione. Scrivi la prima recensione e aiuta gli altri utenti a scegliere.

Scrivi una recensione

Top o flop? Scrivi la tua recensione.

Per i messaggi a CeDe.ch si prega di utilizzare il modulo di contatto.

I campi contrassegnati da * sono obbligatori.

Inviando questo modulo si accetta la nostra dichiarazione protezione dati.