Fr. 76.00

Machine Learning for Medical Image Reconstruction - 5th International Workshop, MLMIR 2022, Held in Conjunction with MICCAI 2022, Singapore, September 22, 2022, Proceedings

Inglese · Tascabile

Spedizione di solito entro 1 a 2 settimane (il titolo viene stampato sull'ordine)

Descrizione

Ulteriori informazioni

This book constitutes the refereed proceedings of the 5th International Workshop on Machine Learning for Medical Reconstruction, MLMIR 2022, held in conjunction with MICCAI 2022, in September 2022, held in Singapore.The 15 papers presented were carefully reviewed and selected from 19 submissions. The papers are organized in the following topical sections: deep learning for magnetic resonance imaging and deep learning for general image reconstruction.

Sommario

Deep Learning for Magnetic Resonance Imaging.- Rethinking the optimization process for self-supervised model-driven MRI reconstruction.- NPB-REC: Non-parametric Assessment of Uncertainty in Deep-learning-based MRI Reconstruction from Undersampled Data.- Adversarial Robustness of MR Image Reconstruction under Realistic Perturbations.- High-Fidelity MRI Reconstruction with the Densely Connected Network Cascade and Feature Residual Data Consistency Priors.- Metal artifact correction MRI using multi-contrast deep neural networks for diagnosis of degenerative spinal diseases.- Segmentation-Aware MRI Reconstruction.- MRI Reconstruction with Conditional Adversarial Transformers.- Deep Learning for General Image Reconstruction- A Noise-level-aware Framework for PET Image Denoising.- DuDoTrans: Dual-Domain Transformer for Sparse-View CT Reconstruction.- Ce Wang, Kun Shang, Haimiao Zhang, Qian Li, and S. Kevin Zhou Deep Denoising Network for X-Ray Fluoroscopic Image Sequences of Moving Objects.- PP-MPI: A Deep Plug-and-Play Prior for Magnetic Particle Imaging Reconstruction.- Learning while Acquisition: Towards Active Learning Framework for Beamforming in Ultrasound Imaging.- DPDudoNet: Deep-Prior based Dual-domain Network for Low-dose Computed Tomography Reconstruction.- MTD-GAN: Multi-Task Discriminator based Generative Adversarial Networks for Low-Dose CT Denoising.- Uncertainty-Informed Bayesian PET Image Reconstruction using a Deep Image Prior.

Dettagli sul prodotto

Con la collaborazione di Nandinee Haq (Editore), Patricia Johnson (Editore), Andreas Maier (Editore), Andreas Maier et al (Editore), Chen Qin (Editore), Tobias Würfl (Editore), Jaejun Yoo (Editore)
Editore Springer, Berlin
 
Lingue Inglese
Formato Tascabile
Pubblicazione 22.09.2022
 
EAN 9783031172465
ISBN 978-3-0-3117246-5
Pagine 157
Dimensioni 155 mm x 9 mm x 235 mm
Illustrazioni VIII, 157 p. 83 illus., 54 illus. in color.
Serie Lecture Notes in Computer Science
Categoria Scienze naturali, medicina, informatica, tecnica > Informatica, EDP > Informatica

Recensioni dei clienti

Per questo articolo non c'è ancora nessuna recensione. Scrivi la prima recensione e aiuta gli altri utenti a scegliere.

Scrivi una recensione

Top o flop? Scrivi la tua recensione.

Per i messaggi a CeDe.ch si prega di utilizzare il modulo di contatto.

I campi contrassegnati da * sono obbligatori.

Inviando questo modulo si accetta la nostra dichiarazione protezione dati.