Fr. 70.00

Control of Flexible-link Manipulators Using Neural Networks

Inglese · Tascabile

Spedizione di solito entro 6 a 7 settimane

Descrizione

Ulteriori informazioni

Control of Flexible-link Manipulators Using Neural Networks addresses the difficulties that arise in controlling the end-point of a manipulator that has a significant amount of structural flexibility in its links. The non-minimum phase characteristic, coupling effects, nonlinearities, parameter variations and unmodeled dynamics in such a manipulator all contribute to these difficulties. Control strategies that ignore these uncertainties and nonlinearities generally fail to provide satisfactory closed-loop performance. This monograph develops and experimentally evaluates several intelligent (neural network based) control techniques to address the problem of controlling the end-point of flexible-link manipulators in the presence of all the aforementioned difficulties. To highlight the main issues, a very flexible-link manipulator whose hub exhibits a considerable amount of friction is considered for the experimental work. Four different neural network schemes are proposed and implemented on the experimental test-bed. The neural networks are trained and employed as online controllers.

Sommario

Manipulator model.- Output redefinition.- Proposed neural network structures.- Experimental results.

Riassunto

Control of Flexible-link Manipulators Using Neural Networks addresses the difficulties that arise in controlling the end-point of a manipulator that has a significant amount of structural flexibility in its links. The non-minimum phase characteristic, coupling effects, nonlinearities, parameter variations and unmodeled dynamics in such a manipulator all contribute to these difficulties. Control strategies that ignore these uncertainties and nonlinearities generally fail to provide satisfactory closed-loop performance. This monograph develops and experimentally evaluates several intelligent (neural network based) control techniques to address the problem of controlling the end-point of flexible-link manipulators in the presence of all the aforementioned difficulties. To highlight the main issues, a very flexible-link manipulator whose hub exhibits a considerable amount of friction is considered for the experimental work. Four different neural network schemes are proposed and implemented on the experimental test-bed. The neural networks are trained and employed as online controllers.

Recensioni dei clienti

Per questo articolo non c'è ancora nessuna recensione. Scrivi la prima recensione e aiuta gli altri utenti a scegliere.

Scrivi una recensione

Top o flop? Scrivi la tua recensione.

Per i messaggi a CeDe.ch si prega di utilizzare il modulo di contatto.

I campi contrassegnati da * sono obbligatori.

Inviando questo modulo si accetta la nostra dichiarazione protezione dati.