Fr. 69.00

MCMC from Scratch - A Practical Introduction to Markov Chain Monte Carlo

Inglese · Copertina rigida

Spedizione di solito entro 2 a 3 settimane (il titolo viene stampato sull'ordine)

Descrizione

Ulteriori informazioni

This textbook explains the fundamentals of Markov Chain Monte Carlo (MCMC)  without assuming advanced knowledge of mathematics and programming. MCMC is  a powerful technique that can be used to integrate complicated functions or to handle  complicated probability distributions. MCMC is frequently used in diverse fields where  statistical methods are important - e.g. Bayesian statistics, quantum physics, machine  learning, computer science, computational biology, and mathematical economics. This  book aims to equip readers with a sound understanding of MCMC and enable them  to write simulation codes by themselves. 
The content consists of six chapters. Following Chap. 2, which introduces readers to the Monte Carlo algorithm and highlights the advantages of MCMC, Chap. 3 presents  the general aspects of MCMC. Chap. 4 illustrates the essence of MCMC through  the simple example of the Metropolis algorithm. In turn, Chap. 5explains the HMC  algorithm, Gibbs sampling algorithm and Metropolis-Hastings algorithm, discussing  their pros, cons and pitfalls. Lastly, Chap. 6 presents several applications of MCMC.  Including a wealth of examples and exercises with solutions, as well as sample codes  and further math topics in the Appendix, this book offers a valuable asset for students  and beginners in various fields. 

Sommario

Chapter 1: Introduction.- Chapter 2: What is the Monte Carlo method?.- Chapter 3: General Aspects of Markov Chain Monte Carlo.- Chapter 4: Metropolis Algorithm.- Chapter 5: Other Useful Algorithms.- Chapter 6: Applications of Markov Chain Monte Carlo.

Info autore










Masanori Hanada is a theoretical physicist at the School of Mathematical Sciences, Queen Mary University of London. His research interests include strongly coupled quantum systems, quantum field theory, and superstring theory. He and his collaborators pioneered the application of Markov Chain Monte Carlo methods for superstring theory.


So Matsuura is a theoretical physicist at Research and Education Center for Natural Sciences, Keio University. His research interests include superstring theory and nonperturbative lattice formulation of supersymmetry quantum field theory. In addition to physics research, he has a strong passion for public outreach activities and delivers many public lectures.


Dettagli sul prodotto

Autori Masanori Hanada, So Matsuura
Editore Springer, Berlin
 
Lingue Inglese
Formato Copertina rigida
Pubblicazione 31.07.2022
 
EAN 9789811927140
ISBN 978-981-1927-14-0
Pagine 194
Illustrazioni IX, 194 p. 69 illus., 24 illus. in color.
Categoria Scienze naturali, medicina, informatica, tecnica > Matematica > Teoria delle probabilità, stocastica, statistica matematica

Recensioni dei clienti

Per questo articolo non c'è ancora nessuna recensione. Scrivi la prima recensione e aiuta gli altri utenti a scegliere.

Scrivi una recensione

Top o flop? Scrivi la tua recensione.

Per i messaggi a CeDe.ch si prega di utilizzare il modulo di contatto.

I campi contrassegnati da * sono obbligatori.

Inviando questo modulo si accetta la nostra dichiarazione protezione dati.