Fr. 236.00

Anova and Mixed Models - A Short Introduction Using R

Inglese · Copertina rigida

Spedizione di solito entro 1 a 3 settimane (non disponibile a breve termine)

Descrizione

Ulteriori informazioni










ANOVA and Mixed Models: A Short Introduction Using R provides both the practitioner and researcher a compact introduction to the analysis of data from the most popular experimental designs. Based on knowledge from an introductory course on probability and statistics, the theoretical foundations of the most important models are introduced. The focus is on an intuitive understanding of the theory, common pitfalls in practice, and the application of the methods in R. From data visualization and model fitting, up to the interpretation of the corresponding output, the whole workflow is presented using R. The book does not only cover standard ANOVA models, but also models for more advanced designs and mixed models, which are common in many practical applications.

Features

Accessible to readers with a basic background in probability and statistics

Covers fundamental concepts of experimental design and cause-effect relationships

Introduces classical ANOVA models, including contrasts and multiple testing

Provides an example-based introduction to mixed models

Features basic concepts of split-plot and incomplete block designs

R code available for all steps

Supplementary website with additional resources and updates available at https://stat.ethz.ch/~meier/teaching/book-anova/

This book is primarily aimed at students, researchers, and practitioners from all areas who wish to analyze corresponding data with R. Readers will learn a broad array of models hand-in-hand with R, including the applications of some of the most important add-on packages.

Sommario

1. Learning from Data. 1.1. Cause-Effect Relationships. 1.2. Experimental Studies. 2. Completely Randomized Designs. 2.1. One-Way Analysis of Variance. 2.2. Checking Model Assumptions. 2.3. Nonparametric Approaches. 2.4. Power or "What Sample Size Do I Need?". 2.5. Adjusting for Covariates. 2.6. Appendix. 3. Contrasts and Multiple Testing. 3.1. Contrasts. 3.2. Multiple Testing. 4. Factorial Treatment Structure. 4.1. Introduction. 4.2. Two-Way ANOVA Model. 5. Complete Block Designs. 5.1. Introduction. 5.2. Randomized Complete Block Designs (RCBD). 5.3. Nonparametric Alternatives. 5.4. Outlook: Multiple Block Factors. 6. Random and Mixed Effects Models. 6.1. Random Effects Models. 7. Split-Plot Designs. 7.1. Introduction. 7.2. Properties of Split-Plot Designs. 7.3. A More Complex Example in Detail: Oat Varieties. 8. Incomplete Block Designs. 8.1. Introduction. 8.2. Balanced Incomplete Block Designs (BIBD). 8.3. Analysis of Incomplete Block Designs. 8.4. Outlook. 8.5. Concluding Remarks. Bibliography. Index

Info autore

Lukas Meier is a senior scientist at the Seminar für Statistik at ETH Zürich. His main interests are teaching statistics at various levels, the application of statistics in many fields of applications using advanced ANOVA or regression models, and high-dimensional statistics. He co-leads the statistical consulting service at ETH Zürich and is the director of a continuing education program in applied statistics.

Riassunto

This book is primarily aimed at students, researchers, and practitioners from all areas who wish to analyze corresponding data with R. Readers will learn a broad array of models hand-in-hand with R, including the application of some of the most important add-on packages.

Recensioni dei clienti

Per questo articolo non c'è ancora nessuna recensione. Scrivi la prima recensione e aiuta gli altri utenti a scegliere.

Scrivi una recensione

Top o flop? Scrivi la tua recensione.

Per i messaggi a CeDe.ch si prega di utilizzare il modulo di contatto.

I campi contrassegnati da * sono obbligatori.

Inviando questo modulo si accetta la nostra dichiarazione protezione dati.