Fr. 52.50

Statistik und maschinelle Lerntechniken - Regressionsmodell und Modell der radialen Basisfunktionen

Tedesco · Tascabile

Spedizione di solito entro 2 a 3 settimane (il titolo viene stampato sull'ordine)

Descrizione

Ulteriori informazioni

Dieses Buch erklärt den Vergleich zwischen statistischen Techniken und Techniken des maschinellen Lernens, insbesondere das Regressionsmodell und das Radial Basis Function Neural Network (RBFNN) Modell. Diese Erläuterung umfasst die mathematische Theorie und das Prinzip, auf deren Grundlage das RBFNN-Modell entwickelt wurde, und geht auf die allgemeine Annahme ein, dass Techniken des maschinellen Lernens eine "Black Box" sind, was bedeutet, dass die Mathematik des neuronalen Netzes nicht erklärt werden kann. Daher wird in diesem Buch die Mathematik der radialen Basisfunktionen erklärt, die von der Gaußfunktion abhängt. In diesem Buch werden einige Schätzungen der beiden Modelle verglichen und erläutert, wie z. B. die Summe der Fehlerquadrate, das Bayes'sche Informationskriterium und die relative Bedeutung der einzelnen erklärenden Variablen.

Info autore










Ich bin Statistiker, Datenanalytiker, Programmierer, Unternehmensbewerter und Dozent für Höhere Mathematik, Statistik und Physik mit sechs Jahren Erfahrung. Ich habe einen B.Sc. (Hons) in Statistik, einen M.Sc. (Hons) in Statistik und studiere derzeit einen Master in Business Administration.

Dettagli sul prodotto

Autori Daniel Akinboro
Editore Verlag Unser Wissen
 
Lingue Tedesco
Formato Tascabile
Pubblicazione 01.01.2022
 
EAN 9786204513164
ISBN 9786204513164
Pagine 64
Categoria Scienze naturali, medicina, informatica, tecnica > Matematica > Altro

Recensioni dei clienti

Per questo articolo non c'è ancora nessuna recensione. Scrivi la prima recensione e aiuta gli altri utenti a scegliere.

Scrivi una recensione

Top o flop? Scrivi la tua recensione.

Per i messaggi a CeDe.ch si prega di utilizzare il modulo di contatto.

I campi contrassegnati da * sono obbligatori.

Inviando questo modulo si accetta la nostra dichiarazione protezione dati.