Fr. 69.00

Steps into Analytic Number Theory - A Problem-Based Introduction

Inglese · Tascabile

Spedizione di solito entro 1 a 2 settimane (il titolo viene stampato sull'ordine)

Descrizione

Ulteriori informazioni

This problem book gathers together 15 problem sets on analytic number theory that can be profitably approached by anyone from advanced high school students to those pursuing graduate studies. It emerged from a 5-week course taught by the first author as part of the 2019 Ross/Asia Mathematics Program held from July 7 to August 9 in Zhenjiang, China.

While it is recommended that the reader has a solid background in mathematical problem solving (as from training for mathematical contests), no possession of advanced subject-matter knowledge is assumed. Most of the solutions require nothing more than elementary number theory and a good grasp of calculus. Problems touch at key topics like the value-distribution of arithmetic functions, the distribution of prime numbers, the distribution of squares and nonsquares modulo a prime number, Dirichlet's theorem on primes in arithmetic progressions, and more.

This book is suitable for any student with a special interest indeveloping problem-solving skills in analytic number theory. It will be an invaluable aid to lecturers and students as a supplementary text for introductory Analytic Number Theory courses at both the undergraduate and graduate level.

Sommario

Preface.- Set #0.- Set #1.- Set #2.- Set #3.- Set #4.- Set #5.- Set #6.- Set #7.- Set #8.- Set #9.- Set #10.- Set #11.- Special Set A: Dirichlet's Theorem for m = 8.- Special Set B: Dirichlet's Theorem for m = l (odd prime).- Special Set C: Dirichlet's Theorem in the General Case.- Solutions to Set #0.- Solutions to Set #1.- Solutions to Set #2.- Solutions to Set #3.- Solutions to Set #4.- Solutions to Set #5.- Solutions to Set #6.- Solutions to Set #7.- Solutions to Set #8.- Solutions to Set #9.- Solutions to Set #10.- Solutions to Set #11.- Solutions to Special Set A.- Solutions to Special Set B.- Solutions to Special Set C.- Epilogue.- Suggestions for Further Reading.

Info autore










Paul Pollack is a Professor at the University of Georgia, USA.


Akash Singha Roy is an undergraduate student at the Chennai Mathematical Institute, India.


Relazione

"This book is much more advanced and makes heavy use of complex analysis. ... This is an excellent and probably unique introduction to the use of continuous methods in the discrete world of number theory, and accessible to a wide mathematical audience." (Allen Stenger, MAA Reviews, June 20, 2021)

Dettagli sul prodotto

Autori Paul Pollack, Akash Singha Roy
Editore Springer, Berlin
 
Lingue Inglese
Formato Tascabile
Pubblicazione 23.02.2022
 
EAN 9783030650797
ISBN 978-3-0-3065079-7
Pagine 197
Dimensioni 155 mm x 11 mm x 235 mm
Illustrazioni XIII, 197 p. 3 illus.
Serie Problem Books in Mathematics
Categoria Scienze naturali, medicina, informatica, tecnica > Matematica > Aritmetica, algebra

Recensioni dei clienti

Per questo articolo non c'è ancora nessuna recensione. Scrivi la prima recensione e aiuta gli altri utenti a scegliere.

Scrivi una recensione

Top o flop? Scrivi la tua recensione.

Per i messaggi a CeDe.ch si prega di utilizzare il modulo di contatto.

I campi contrassegnati da * sono obbligatori.

Inviando questo modulo si accetta la nostra dichiarazione protezione dati.