Fr. 60.90

Mathematical Pictures At a Data Science Exhibition

Inglese · Tascabile

Spedizione di solito entro 1 a 3 settimane (non disponibile a breve termine)

Descrizione

Ulteriori informazioni










This text provides deep and comprehensive coverage of the mathematical background for data science, including machine learning, optimal recovery, compressed sensing, optimization, and neural networks. In the past few decades, heuristic methods adopted by big tech companies have complemented existing scientific disciplines to form the new field of Data Science. This text embarks the readers on an engaging itinerary through the theory supporting the field. Altogether, twenty-seven lecture-length chapters with exercises provide all the details necessary for a solid understanding of key topics in data science. While the book covers standard material on machine learning and optimization, it also includes distinctive presentations of topics such as reproducing kernel Hilbert spaces, spectral clustering, optimal recovery, compressed sensing, group testing, and applications of semidefinite programming. Students and data scientists with less mathematical background will appreciate the appendices that provide more background on some of the more abstract concepts.

Sommario










Part I. Machine Learning: 1. Rudiments of Statistical Learning; 2. Vapnik-Chervonenkis Dimension; 3. Learnability for Binary Classification; 4. Support Vector Machines; 5. Reproducing Kernel Hilbert; 6. Regression and Regularization; 7. Clustering; 8. Dimension Reduction; Part II Optimal Recovery: 9. Foundational Results of Optimal Recovery; 10. Approximability Models; 11. Ideal Selection of Observation Schemes; 12. Curse of Dimensionality; 13. Quasi-Monte Carlo Integration; Part III Compressive Sensing: 14. Sparse Recovery from Linear Observations; 15. The Complexity of Sparse Recovery; 16. Low-Rank Recovery from Linear Observations; 17. Sparse Recovery from One-Bit Observations; 18. Group Testing; Part IV Optimization: 19. Basic Convex Optimization; 20. Snippets of Linear Programming; 21. Duality Theory and Practice; 22. Semidefinite Programming in Action; 23. Instances of Nonconvex Optimization; Part V Neural Networks: 24. First Encounter with ReLU Networks; 25. Expressiveness of Shallow Networks; 26. Various Advantages of Depth; 27. Tidbits on Neural Network Training; Appendix A; High-Dimensional Geometry; Appendix B. Probability Theory; Appendix C. Functional Analysis; Appendix D. Matrix Analysis; Appendix E. Approximation Theory.

Info autore

Simon Foucart is Professor of Mathematics at Texas A&M University, where he was named Presidential Impact Fellow in 2019. He has previously written, together with Holger Rauhut, the influential book A Mathematical Introduction to Compressive Sensing (2013).

Riassunto

This text explores a diverse set of data science topics through a mathematical lens, helping mathematicians become acquainted with data science in general, and machine learning, optimal recovery, compressive sensing, optimization, and neural networks in particular. It will also be valuable to data scientists seeking mathematical sophistication.

Recensioni dei clienti

Per questo articolo non c'è ancora nessuna recensione. Scrivi la prima recensione e aiuta gli altri utenti a scegliere.

Scrivi una recensione

Top o flop? Scrivi la tua recensione.

Per i messaggi a CeDe.ch si prega di utilizzare il modulo di contatto.

I campi contrassegnati da * sono obbligatori.

Inviando questo modulo si accetta la nostra dichiarazione protezione dati.