Fr. 206.00

Heuristics for Optimization and Learning

Inglese · Tascabile

Spedizione di solito entro 1 a 2 settimane (il titolo viene stampato sull'ordine)

Descrizione

Ulteriori informazioni

This book is a new contribution aiming to give some last research findings in the field of optimization and computing. This work is in the same field target than our two previous books published: "Recent Developments in Metaheuristics" and "Metaheuristics for Production Systems", books in Springer Series in Operations Research/Computer Science Interfaces.
The challenge with this work is to gather the main contribution in three fields, optimization technique for production decision, general development for optimization and computing method and wider spread applications. 
The number of researches dealing with decision maker tool and optimization method grows very quickly these last years and in a large number of fields. We may be able to read nice and worthy works from research developed in chemical, mechanical, computing, automotive and many other fields.

Sommario

Process Plan Generation for Reconfigurable Manufacturing Systems: Exact vs Evolutionary-Based Multi-Objective Approaches.- On VNS-GRASP and Iterated Greedy Metaheuristics for Solving Hybrid Flow Shop Scheduling Problem with Uniform Parallel Machines and Sequence Independent Setup Time.- A Variable Block Insertion Heuristic for the Energy-Efficient Permutation Flowshop Scheduling with Makespan Criterion.- Solving 0-1 Bi-Objective Multi-Dimensional Knapsack Problems using Binary Genetic Algorithm.- An asynchronous parallel evolutionary algorithm for solving large .instances of the multi-objective QAP.- Learning from Prior Designs for Facility Layout Optimization.- Single-objective Real-parameter Optimization: Enhanced LSHADE-SPACMA Algorithm.- Operations Research at Bulk Terminal: A Parallel Column Generation Approach.- Heuristic solutions for the ( ,beta)-k feature set problem.- Generic Support for Precomputation-Based Global Routing Constraints in Local Search Optimization.- Dynamic Simulated Annealing with Adaptive Neighborhood using Hidden Markov Model.- Hybridization of the differential evolution algorithm for continuous multi-objective optimization.- A Steganographic Embedding Scheme Using Improved-PSO Approach.- Algorithms towards the Automated Customer Inquiry Classification.-  An heuristic scheme for a reaction advection diffusion equation.- Stock Market Speculation System Development based on Technico Temporal indicators and Data Mining Tools.- A New Hidden Markov Model Approach for Pheromone Level Exponent Adaptation in Ant Colony System.- A new cut-based genetic algorithm for graph partitioning applied to cell formation.-  Memetic algorithm and evolutionary operators for multi-objective matrix tri-factorization problem.- Quaternion simulated annealing.- A Cooperative Multi-Swarm Particle Swarm Optimizer Based Hidden Markov Model.- Experimental Sensitivity Analysis of Grid-Based Parameter Adaptation Method.-  Auto-Scaling System in Apache Spark Cluster using Model-Based Deep Reinforcement Learning.- Innovation Networks from Inter-Organizational Research Collaborations.- Assessing Film Coefficients of Microchannel Heat Sinks via Cuckoo Search Algorithm.- One-Class Subject Authentication using Feature Extraction by Grammatical Evolution on Accelerometer Data.- Semantic composition of word-embeddings with genetic programming.- New Approach for Continuous and Discrete Optimization: Optimization by Morphological Filters.

Dettagli sul prodotto

Con la collaborazione di Lione Amodeo (Editore), Lionel Amodeo (Editore), El-Ghazali Talbi (Editore), Farouk Yalaoui (Editore)
Editore Springer, Berlin
 
Lingue Inglese
Formato Tascabile
Pubblicazione 30.12.2021
 
EAN 9783030589325
ISBN 978-3-0-3058932-5
Pagine 442
Dimensioni 155 mm x 24 mm x 235 mm
Illustrazioni XV, 442 p. 168 illus., 97 illus. in color.
Serie Studies in Computational Intelligence
Categoria Scienze naturali, medicina, informatica, tecnica > Tecnica > Tematiche generali, enciclopedie

Recensioni dei clienti

Per questo articolo non c'è ancora nessuna recensione. Scrivi la prima recensione e aiuta gli altri utenti a scegliere.

Scrivi una recensione

Top o flop? Scrivi la tua recensione.

Per i messaggi a CeDe.ch si prega di utilizzare il modulo di contatto.

I campi contrassegnati da * sono obbligatori.

Inviando questo modulo si accetta la nostra dichiarazione protezione dati.