Fr. 236.00

Machine Learning and Big Data Analytics Paradigms: Analysis, Applications and Challenges

Inglese · Tascabile

Spedizione di solito entro 1 a 2 settimane (il titolo viene stampato sull'ordine)

Descrizione

Ulteriori informazioni


This book is intended to present the state of the art in research on machine learning and big data analytics. The accepted chapters covered many themes including  artificial intelligence and data mining applications, machine learning and applications, deep learning technology for big data analytics, and modeling, simulation, and security with big data. It is a valuable resource for researchers in the area of big data analytics and its applications.

Sommario

Rough Sets and Rule Induction from Indiscernibility Relations Based on Possible World Semantics in Incomplete Information Systems with Continuous Domains.- Big Data Analytics and Preprocessing.- Artificial Intelligence-based Plant Diseases Classification.- Artificial Intelligence in Potato Leaf Disease Classification: A Deep Learning Approach.- Granules-Based Rough Set Theory for Circuit Breaker Fault Diagnosis.- SQL Injection Attacks Detection and Prevention based on Neuro-Fuzzy Technique.- Convolutional Neural Network with Batch Normalization for Classification of Endoscopic Gastrointestinal Diseases.- A Chaotic Search-Enhanced Genetic Algorithm for Bilevel Programming Problems.- Bio-Inspired Machine Learning Mechanism for Detecting Malicious URL through Passive DNS in Big Data Platform.- Target Analytical: A Text Analytics Framework for Ranking Therapeutic Molecules in the Bibliome.- Earthquakes and Thermal Anomalies in a RemoteSensing Perspective.- Literature Review with Study and Analysis of the Quality Challenges of Recommendation Techniques and their Application in Movie Ratings.- Predicting Student Retention Among a Homogeneous Population using Data Mining.- An Approach for Textual Based Clustering Using Word Embedding.- A Survey on Speckle Noise Reduction in SAR Images.- Comparative Analysis of Different Approaches to Human Activity Recognition based on Accelerometer Signals.- Soil Morphology based on Deep Learning, Polynomial Learning and Gabor Teager-Kaiser Energy Operators.-  Deep Layer Convolutional Neural Network (CNN) Architecture for Breast Cancer Classification Using Histopathological Images.- A survey on Deep Learning for Time-Series Forecasting.- Deep Learning for Taxonomic Classification of Biological Bacterial Sequences.- Particle Swarm Optimization and Grey Wolf Optimizer to Solve Continuous p-Median Location Problems.- Gene Ontology Analysis of Gene Expression Data Using Hybridized PSO Triclustering (HSPO-TriC) Model.- Experimental Studies of Variations Reduction in Chemometric Model Transfer for FT-NIR Miniaturized Sensors.- Smart Environments  Concepts, Applications, and Challenges.- Synonym Multi-Keyword Search over Encrypted Data Using Hierarchical Bloom Filters Index.- Assessing the Performance of E-government Services through Multi-Criteria Analysis: The Case of Egypt.- IoTIwC: IoT Industrial Wireless Controller.- Applying Software Defined Network Concepts for Securing the Client data signals over the Optical Transport Network of Egypt.- Watermarking 3D printing Data Based on Coyote Optimization Algorithm.- A 3D Geolocation Analysis of an RF Emitter Source with Two RF Sensors Based on Time and Angle of Arrival.

Dettagli sul prodotto

Con la collaborazione di Darwish (Editore), Darwish (Editore), Ashraf Darwish (Editore), Abou Ella Hassanien (Editore), Aboul Ella Hassanien (Editore), Aboul Ella Hassanien (Editore)
Editore Springer, Berlin
 
Lingue Inglese
Formato Tascabile
Pubblicazione 29.12.2021
 
EAN 9783030593407
ISBN 978-3-0-3059340-7
Pagine 648
Dimensioni 155 mm x 35 mm x 235 mm
Illustrazioni XI, 648 p. 267 illus., 182 illus. in color.
Serie Studies in Big Data
Categoria Scienze naturali, medicina, informatica, tecnica > Tecnica > Tematiche generali, enciclopedie

Recensioni dei clienti

Per questo articolo non c'è ancora nessuna recensione. Scrivi la prima recensione e aiuta gli altri utenti a scegliere.

Scrivi una recensione

Top o flop? Scrivi la tua recensione.

Per i messaggi a CeDe.ch si prega di utilizzare il modulo di contatto.

I campi contrassegnati da * sono obbligatori.

Inviando questo modulo si accetta la nostra dichiarazione protezione dati.