Fr. 32.90

Text Analysis in Python for Social Scientists - Prediction and Classification

Inglese · Tascabile

Spedizione di solito entro 3 a 5 settimane

Descrizione

Ulteriori informazioni










This Element provides the working social scientist with an overview of the most common methods for text classification, an intuition of their applicability, and Python code to execute them. It covers both the ethical foundations of such work as well as the emerging potential of neural network methods.

Sommario










1. Introduction; 2. Ethics, Fairness, and Bias; 3. Classification; 4. Text as Input; 5. Labels; 6. Train-Dev-Test; 7. Performance Metrics; 8. Comparison and Significance Testing; 9. Overfitting and Regularization; 10. Model Selection and Other Classifiers; 11. Model Bias; 12. Feature Selection; 13. Structured Prediction; 14. Neural Networks Background; 15. Neural Architectures and Models.

Riassunto

This Element provides the working social scientist with an overview of the most common methods for text classification, an intuition of their applicability, and Python code to execute them. It covers both the ethical foundations of such work as well as the emerging potential of neural network methods.

Prefazione

A practical guide to text classification and neural networks in Python for social scientists.

Recensioni dei clienti

Per questo articolo non c'è ancora nessuna recensione. Scrivi la prima recensione e aiuta gli altri utenti a scegliere.

Scrivi una recensione

Top o flop? Scrivi la tua recensione.

Per i messaggi a CeDe.ch si prega di utilizzare il modulo di contatto.

I campi contrassegnati da * sono obbligatori.

Inviando questo modulo si accetta la nostra dichiarazione protezione dati.