Fr. 69.00

Smooth Manifolds and Observables

Inglese · Tascabile

Spedizione di solito entro 1 a 2 settimane (il titolo viene stampato sull'ordine)

Descrizione

Ulteriori informazioni

This textbook demonstrates how differential calculus, smooth manifolds, and commutative algebra constitute a unified whole, despite having arisen at different times and under different circumstances. Motivating this synthesis is the mathematical formalization of the process of observation from classical physics. A broad audience will appreciate this unique approach for the insight it gives into the underlying connections between geometry, physics, and commutative algebra.
The main objective of this book is to explain how differential calculus is a natural part of commutative algebra. This is achieved by studying the corresponding algebras of smooth functions that result in a general construction of the differential calculus on various categories of modules over the given commutative algebra. It is shown in detail that the ordinary differential calculus and differential geometry on smooth manifolds turns out to be precisely the particular case that corresponds to the category of geometric modules over smooth algebras. This approach opens the way to numerous applications, ranging from delicate questions of algebraic geometry to the theory of elementary particles.
Smooth Manifolds and Observables is intended for advanced undergraduates, graduate students, and researchers in mathematics and physics. This second edition adds ten new chapters to further develop the notion of differential calculus over commutative algebras, showing it to be a generalization of the differential calculus on smooth manifolds. Applications to diverse areas, such as symplectic manifolds, de Rham cohomology, and Poisson brackets are explored. Additional examples of the basic functors of the theory are presented alongside numerous new exercises, providing readers with many more opportunities to practice these concepts.

Sommario

Foreword.- Preface.- 1. Introduction.- 2. Cutoff and Other Special Smooth Functions on R^n.- 3. Algebras and Points.- 4. Smooth Manifolds (Algebraic Definition).- 5. Charts and Atlases.- 6. Smooth Maps.- 7. Equivalence of Coordinate and Algebraic Definitions.- 8. Points, Spectra and Ghosts.- 9. The Differential Calculus as Part of Commutative Algebra.- 10.  Symbols and the Hamiltonian Formalism.- 11. Smooth Bundles.- 12. Vector Bundles and Projective Modules.- 13. Localization.- 14. Differential 1-forms and Jets.- 15. Functors of the differential calculus and their representations.- 16. Cosymbols, Tensors, and Smoothness.- 17. Spencer Complexes and Differential Forms.- 18. The (co)chain complexes that come from the Spencer Sequence.- 19. Differential forms: classical and algebraic approach.- 20. Cohomology.- 21. Differential operators over graded algebras.- Afterword.- Appendix.- References.- Index.

Info autore










Jet Nestruev is a collective of authors, who originally convened for a seminar run by Alexandre Vinogradov at the Mechanics and Mathematics Department of Moscow State University in 1969. In the present edition, Jet Nestruev consists of Alexander Astashov (Senior Researcher at the State Research Institute of Aviation Systems), Alexandre Vinogradov (Professor of Mathematics at Salerno University), Mikhail Vinogradov (Diffiety Institute), and Alexey Sossinsky (Professor at the Independent University of Moscow).

Dettagli sul prodotto

Autori Jet Nestruev
Editore Springer, Berlin
 
Lingue Inglese
Formato Tascabile
Pubblicazione 24.09.2021
 
EAN 9783030456528
ISBN 978-3-0-3045652-8
Pagine 433
Dimensioni 155 mm x 24 mm x 235 mm
Illustrazioni XVIII, 433 p. 88 illus.
Serie Graduate Texts in Mathematics
Categoria Scienze naturali, medicina, informatica, tecnica > Matematica > Geometria

Recensioni dei clienti

Per questo articolo non c'è ancora nessuna recensione. Scrivi la prima recensione e aiuta gli altri utenti a scegliere.

Scrivi una recensione

Top o flop? Scrivi la tua recensione.

Per i messaggi a CeDe.ch si prega di utilizzare il modulo di contatto.

I campi contrassegnati da * sono obbligatori.

Inviando questo modulo si accetta la nostra dichiarazione protezione dati.