Fr. 206.00

Polynomial Rings and Affine Algebraic Geometry - PRAAG 2018, Tokyo, Japan, February 12-16

Inglese · Tascabile

Spedizione di solito entro 1 a 2 settimane (il titolo viene stampato sull'ordine)

Descrizione

Ulteriori informazioni

This proceedings volume gathers selected, peer-reviewed works presented at the Polynomial Rings and Affine Algebraic Geometry Conference, which was held at Tokyo Metropolitan University on February 12-16, 2018. Readers will find some of the latest research conducted by an international group of experts on affine and projective algebraic geometry. The topics covered include group actions and linearization, automorphism groups and their structure as infinite-dimensional varieties, invariant theory, the Cancellation Problem, the Embedding Problem, Mathieu spaces and the Jacobian Conjecture, the Dolgachev-Weisfeiler Conjecture, classification of curves and surfaces, real forms of complex varieties, and questions of rationality, unirationality, and birationality. These papers will be of interest to all researchers and graduate students working in the fields of affine and projective algebraic geometry, as well as on certain aspects of commutative algebra, Lie theory, symplectic geometry andStein manifolds.

Sommario

Ciliberto, C. and Zaidenberg, M: On Fano schemes of complete intersections.- Daigle, D.: Locally nilpotent sets of derivations.- DeBondt, M. and Watanabe, J: On the theory of Gordan-Noether on homogeneous forms with zero Hessian.- Dubouloz, A. and Petitijean, C: Rational real algebraic models of compact di erential surfaces with circle actions.- Freudenburg, G.: The super-rank of a locally nilpotent derivation of a polynomial ring.- Gurjar, R., Masuda, K., and Miyanishi, M: A ne space fibrations.- Gurjar, R.: A graded domain is determined at its vertex: Applications to invariant theory.- Kojima, H.: Singularities of normal log canonical del Pezzo surfaces of rank one.- Moser-Jauslin, L.: O2(C)-vector bundles and equivariant real circle actions.- Nagamine, T.: On some su cient conditions for polynomials to be closed polynomials over Domains.- Popov, V.: Variations on the theme of Zariski's Cancellation Problem.- Takeda, Y.: Tango structures on curves in characteristic 2.- Tanimoto, R.: Exponential matrices of size five-by-five.- Van den Essen, A.: Mathieu-Zhao Spaces and the Jacobian Conjecture.

Info autore










Shigeru Kuroda is a Professor at Tokyo Metropolitan University, Japan. Holding a PhD (2003) from Tohoku University, Japan, his main research focuses are on affine algebraic geometry and polynomial ring theory.

Nobuharu Onoda is a Professor at University of Fukui, Japan. He holds a PhD (1983) from Osaka University, Japan. His main research interests are in commutative algebra related to affine algebraic geometry.


Gene Freudenburg is a Professor at Western Michigan University, USA. He completed his PhD (1992) at Washington University, Saint Louis, USA. His chief research interests are in commutative algebra and affine algebraic geometry. He authored the Springer book "Algebraic Theory of Locally Nilpotent Derivations" (978-3-662-55348-0), now in its second edition.



Dettagli sul prodotto

Con la collaborazione di Gene Freudenburg (Editore), Shigeru Kuroda (Editore), Nobuhar Onoda (Editore), Nobuharu Onoda (Editore)
Editore Springer, Berlin
 
Lingue Inglese
Formato Tascabile
Pubblicazione 11.04.2021
 
EAN 9783030421380
ISBN 978-3-0-3042138-0
Pagine 315
Dimensioni 155 mm x 17 mm x 235 mm
Illustrazioni X, 315 p. 11 illus., 3 illus. in color.
Serie Springer Proceedings in Mathematics & Statistics
Categoria Scienze naturali, medicina, informatica, tecnica > Matematica > Aritmetica, algebra

Recensioni dei clienti

Per questo articolo non c'è ancora nessuna recensione. Scrivi la prima recensione e aiuta gli altri utenti a scegliere.

Scrivi una recensione

Top o flop? Scrivi la tua recensione.

Per i messaggi a CeDe.ch si prega di utilizzare il modulo di contatto.

I campi contrassegnati da * sono obbligatori.

Inviando questo modulo si accetta la nostra dichiarazione protezione dati.