Fr. 123.00

Motion of a Drop in an Incompressible Fluid

Inglese · Tascabile

Spedizione di solito entro 1 a 2 settimane (il titolo viene stampato sull'ordine)

Descrizione

Ulteriori informazioni

This mathematical monograph details the authors' results on solutions to problems governing the simultaneous motion of two incompressible fluids. Featuring a thorough investigation of the unsteady motion of one fluid in another, researchers will find this to be a valuable resource when studying non-coercive problems to which standard techniques cannot be applied.  As authorities in the area, the authors offer valuable insight into this area of research, which they have helped pioneer. This volume will offer pathways to further research for those interested in the active field of free boundary problems in fluid mechanics, and specifically the two-phase problem for the Navier-Stokes equations.
The authors' main focus is on the evolution of an isolated mass with and without surface tension on the free interface. Using the Lagrange and Hanzawa transformations, local well-posedness in the Hölder and Sobolev-Slobodeckij on L2 spaces is proven as well. Globalwell-posedness for small data is also proven, as is the well-posedness and stability of the motion of two phase fluid in a bounded domain.
Motion of a Drop in an Incompressible Fluid will appeal to researchers and graduate students working in the fields of mathematical hydrodynamics, the analysis of partial differential equations, and related topics.

Sommario

Introduction.- A Model Problem with Plane Interface and with Positive Surface Tension Coefficient.- The Model Problem Without Surface Tension Forces.- A Linear Problem with Closed Interface Under Nonnegative Surface Tension.- Local Solvability of the Problem in Weighted Hölder Spaces.- Global Solvability in the Hölder Spaces for the Nonlinear Problem without Surface Tension.- Global Solvability of the Problem Including Capillary Forces. Case of the Hölder Spaces.- Thermocapillary Convection Problem.- Motion of Two Fluids in the Oberbeck - Boussinesq Approximation.- Local L2-solvability of the Problem with Nonnegative Coefficient of Surface Tension.- Global L2-solvability of the Problem without Surface Tension.- L2-Theory for Two-Phase Capillary Fluid.

Relazione

"The book provides a profound introduction into recent developments of the mathematical theory of incompressible two-phase flows and outlines multitude of contributions by two outstanding experts in this field." (Thomas Eiter, zbMATH 1511.76002, 2023)

Dettagli sul prodotto

Autori I Denisova, I V Denisova, I. V. Denisova, V A Solonnikov, V. A. Solonnikov
Editore Springer, Berlin
 
Lingue Inglese
Formato Tascabile
Pubblicazione 27.06.2021
 
EAN 9783030700522
ISBN 978-3-0-3070052-2
Pagine 316
Dimensioni 155 mm x 17 mm x 235 mm
Illustrazioni VII, 316 p. 208 illus., 2 illus. in color.
Serie Advances in Mathematical Fluid Mechanics
Lecture Notes in Mathematical Fluid Mechanics
Categoria Scienze naturali, medicina, informatica, tecnica > Matematica > Analisi

Recensioni dei clienti

Per questo articolo non c'è ancora nessuna recensione. Scrivi la prima recensione e aiuta gli altri utenti a scegliere.

Scrivi una recensione

Top o flop? Scrivi la tua recensione.

Per i messaggi a CeDe.ch si prega di utilizzare il modulo di contatto.

I campi contrassegnati da * sono obbligatori.

Inviando questo modulo si accetta la nostra dichiarazione protezione dati.