Fr. 89.00

Financial Data Resampling for Machine Learning Based Trading - Application to Cryptocurrency Markets

Inglese · Tascabile

Spedizione di solito entro 1 a 2 settimane (il titolo viene stampato sull'ordine)

Descrizione

Ulteriori informazioni

This book presents a system that combines the expertise of four algorithms, namely Gradient Tree Boosting, Logistic Regression, Random Forest and Support Vector Classifier to trade with several cryptocurrencies. A new method for resampling financial data is presented as alternative to the classical time sampled data commonly used in financial market trading. The new resampling method uses a closing value threshold to resample the data creating a signal better suited for financial trading, thus achieving higher returns without increased risk. The performance of the algorithm with the new resampling method and the classical time sampled data are compared and the advantages of using the system developed in this work are highlighted.

Sommario

Chapter 1 - Introduction       
Chapter 2 - Related work     
Chapter 3 - Implementation               
Chapter 4 - Results  
Chapter 5 - Conclusions and future work 

Info autore










Tomé Almeida Borges is a data scientist at Santander Portugal since December 2019. He received the master's degree in Electrical and Computer Engineering from Instituto Superior Técnico, Technical University of Lisbon, Portugal, in 2019. His research activity is focused on pattern recognition and data resampling methods of financial markets.

Rui Ferreira Neves is a professor at Instituto Superior Técnico since 2005. He received the Diploma in Engineering and the Ph.D. degrees in Electrical and Computer Engineering from the Instituto Superior Técnico, Technical University of Lisbon, Portugal, in 1993 and 2001, respectively. In 2006, he joined Instituto de Telecomunicações (IT) as a research associate. His research activity deals with evolutionary computation and pattern matching applied to the financial markets, sensor networks, embedded systems and mixed signal integrated circuits. He uses both fundamental, technical and pattern matching indicators to find the evolutionof the financial markets.


Relazione

"The book contains little theory and presents mostly detailed numerical experiments, it reads very engagingly and inspires with many ideas. It is certainly not a reference book but rather a short monograph on a very clearly defined topic. It will be interesting to see whether the trading strategies presented can be transferred from the crypto markets to the presumably more efficient standard stock markets ... as published strategies tend to make markets more efficient." (Volker H. Schulz, SIAM Review, Vol. 64 (3), September, 2022)

Dettagli sul prodotto

Autori Tomé Almeid Borges, Tomé Almeida Borges, Rui Neves
Editore Springer, Berlin
 
Lingue Inglese
Formato Tascabile
Pubblicazione 22.03.2021
 
EAN 9783030683788
ISBN 978-3-0-3068378-8
Pagine 93
Dimensioni 155 mm x 9 mm x 234 mm
Illustrazioni XV, 93 p. 30 illus., 28 illus. in color.
Serie SpringerBriefs in Applied Sciences and Technology
SpringerBriefs in Computational Intelligence
Categoria Scienze naturali, medicina, informatica, tecnica > Matematica > Teoria delle probabilità, stocastica, statistica matematica

Recensioni dei clienti

Per questo articolo non c'è ancora nessuna recensione. Scrivi la prima recensione e aiuta gli altri utenti a scegliere.

Scrivi una recensione

Top o flop? Scrivi la tua recensione.

Per i messaggi a CeDe.ch si prega di utilizzare il modulo di contatto.

I campi contrassegnati da * sono obbligatori.

Inviando questo modulo si accetta la nostra dichiarazione protezione dati.