Fr. 89.00

Machine Learning in Social Networks - Embedding Nodes, Edges, Communities, and Graphs

Inglese · Tascabile

Spedizione di solito entro 1 a 2 settimane (il titolo viene stampato sull'ordine)

Descrizione

Ulteriori informazioni

This book deals with network representation learning. It deals with embedding nodes, edges, subgraphs and graphs. There is a growing interest in understanding complex systems in different domains including health, education, agriculture and transportation. Such complex systems are analyzed by modeling, using networks that are aptly called complex networks. Networks are becoming ubiquitous as they can represent many real-world relational data, for instance, information networks, molecular structures, telecommunication networks and protein-protein interaction networks. Analysis of these networks provides advantages in many fields such as recommendation (recommending friends in a social network), biological field (deducing connections between proteins for treating new diseases) and community detection (grouping users of a social network according to their interests) by leveraging the latent information of networks. An active and important area ofcurrent interest is to come out with algorithms that learn features by embedding nodes or (sub)graphs into a vector space. These tasks come under the broad umbrella of representation learning. A representation learning model learns a mapping function that transforms the graphs' structure information to a low-/high-dimension vector space maintaining all the relevant properties. 

Sommario

Introduction.- Representations of Networks.- Deep Learning.- Node Representations.- Embedding Graphs .- Conclusions.

Info autore










M.N. Murty is currently a Professor in the Department of Computer Science and Automation at the Indian Institute of Science, Bangalore. His research interests are in the area of pattern recognition, data mining, and social network analysis. 

Ms. Manasvi Aggarwal is currently pursuing her M.S. at the Indian Institute of Science, Bangalore. Her research interest is in the areas of social networks and machine learning 


Dettagli sul prodotto

Autori Manasv Aggarwal, Manasvi Aggarwal, M N Murty, M. N. Murty, M.N. Murty
Editore Springer, Berlin
 
Lingue Inglese
Formato Tascabile
Pubblicazione 06.02.2021
 
EAN 9789813340213
ISBN 978-981-3340-21-3
Pagine 112
Dimensioni 157 mm x 8 mm x 236 mm
Illustrazioni XI, 112 p. 29 illus., 18 illus. in color.
Serie SpringerBriefs in Applied Sciences and Technology
SpringerBriefs in Computational Intelligence
Categoria Scienze naturali, medicina, informatica, tecnica > Tecnica > Tematiche generali, enciclopedie

Recensioni dei clienti

Per questo articolo non c'è ancora nessuna recensione. Scrivi la prima recensione e aiuta gli altri utenti a scegliere.

Scrivi una recensione

Top o flop? Scrivi la tua recensione.

Per i messaggi a CeDe.ch si prega di utilizzare il modulo di contatto.

I campi contrassegnati da * sono obbligatori.

Inviando questo modulo si accetta la nostra dichiarazione protezione dati.