Fr. 100.00

Constrained Willmore Surfaces - Symmetries of a Mobius Invariant Integrable System

Inglese · Tascabile

Spedizione di solito entro 1 a 3 settimane (non disponibile a breve termine)

Descrizione

Ulteriori informazioni










From Bäcklund to Darboux: a comprehensive journey through the transformation theory of constrained Willmore surfaces, with applications to constant mean curvature surfaces.

Sommario










Introduction; 1. A bundle approach to conformal surfaces in space-forms; 2. The mean curvature sphere congruence; 3. Surfaces under change of flat metric connection; 4. Willmore surfaces; 5. The Euler-Lagrange constrained Willmore surface equation; 6. Transformations of generalized harmonic bundles and constrained Willmore surfaces; 7. Constrained Willmore surfaces with a conserved quantity; 8. Constrained Willmore surfaces and the isothermic surface condition; 9. The special case of surfaces in 4-space; Appendix A. Hopf differential and umbilics; Appendix B. Twisted vs. untwisted Bäcklund transformation parameters; References; Index.

Info autore

Áurea Casinhas Quintino is an Assistant Professor at NOVA University Lisbon and a member of CMAFcIO – Center for Mathematics, Fundamental Applications and Operations Research, Faculty of Sciences of the University of Lisbon. Her research interests focus on integrable systems in Riemannian geometry.

Riassunto

This monograph presents the transformation theory of Willmore surfaces (possibly with a constraint), including applications to surfaces of constant mean curvature. Self-contained accounts of the core topics make it suitable for newcomers to the field, while many detailed computations and new results make it an appealing reference for experts.

Recensioni dei clienti

Per questo articolo non c'è ancora nessuna recensione. Scrivi la prima recensione e aiuta gli altri utenti a scegliere.

Scrivi una recensione

Top o flop? Scrivi la tua recensione.

Per i messaggi a CeDe.ch si prega di utilizzare il modulo di contatto.

I campi contrassegnati da * sono obbligatori.

Inviando questo modulo si accetta la nostra dichiarazione protezione dati.