Fr. 215.00

The Functional Role of Critical Dynamics in Neural Systems

Inglese · Tascabile

Spedizione di solito entro 1 a 2 settimane (il titolo viene stampato sull'ordine)

Descrizione

Ulteriori informazioni

This book offers a timely overview of theories and methods developed by an authoritative group of researchers to understand the link between criticality and brain functioning. Cortical information processing in particular and brain function in general rely heavily on the collective dynamics of neurons and networks distributed over many brain areas. A key concept for characterizing and understanding brain dynamics is the idea that networks operate near a critical state, which offers several potential benefits for computation and information processing. However, there is still a large gap between research on criticality and understanding brain function. For example, cortical networks are not homogeneous but highly structured, they are not in a state of spontaneous activation but strongly driven by changing external stimuli, and they process information with respect to behavioral goals. So far the questions relating to how critical dynamics may support computation in this complex setting, and whether they can outperform other information processing schemes remain open. Based on the workshop "Dynamical Network States, Criticality and Cortical Function", held in March 2017 at the Hanse Institute for Advanced Studies (HWK) in Delmenhorst, Germany, the book provides readers with extensive information on these topics, as well as tools and ideas to answer the above-mentioned questions. It is meant for physicists, computational and systems neuroscientists, and biologists.

Sommario

Avalanche dynamics and correlations in neural systems.- Playing at the edge of criticality: Expanded whole-brain repertoire of connectome-harmonics.- Complexity of network connectivity promotes self-organized criticality in cortical ensembles.- From neurons to networks: critical slowing down governs information processing across vigilance states.- The challenge of taming a latching network near criticality.- Fading memory, plasticity, and criticality in recurrent networks.- Homeostatic structural plasticity can build critical networks.- Investigating Linear Stability and Criticality in Local Cortical Circuits from Multi-Unit Activity.- Optimal Readout of Neural Activity Near Criticality.- Critical behavior and memory function in a model of spiking neurons with a reservoir of spatio-temporal patterns.- Assessing criticality in experiments.- The role of criticality in flexible visual information processing.- Statistical models of neural activity, criticality, and Zipf's law. 

Dettagli sul prodotto

Con la collaborazione di Udo Ernst (Editore), J. Michael Herrmann (Editore), Michael Herrmann (Editore), J Michael Herrmann (Editore), Nergis Tomen (Editore)
Editore Springer, Berlin
 
Lingue Inglese
Formato Tascabile
Pubblicazione 01.08.2020
 
EAN 9783030209674
ISBN 978-3-0-3020967-4
Pagine 287
Dimensioni 157 mm x 17 mm x 237 mm
Illustrazioni XX, 287 p. 122 illus., 99 illus. in color.
Serie Springer Series on Bio- and Neurosystems
Categoria Scienze naturali, medicina, informatica, tecnica > Medicina > Branche cliniche

Recensioni dei clienti

Per questo articolo non c'è ancora nessuna recensione. Scrivi la prima recensione e aiuta gli altri utenti a scegliere.

Scrivi una recensione

Top o flop? Scrivi la tua recensione.

Per i messaggi a CeDe.ch si prega di utilizzare il modulo di contatto.

I campi contrassegnati da * sono obbligatori.

Inviando questo modulo si accetta la nostra dichiarazione protezione dati.