Fr. 236.00

Proceedings of ELM 2018

Inglese · Tascabile

Spedizione di solito entro 1 a 2 settimane (il titolo viene stampato sull'ordine)

Descrizione

Ulteriori informazioni


This book contains some selected papers from the International Conference on Extreme Learning Machine 2018, which was held in Singapore, November 21-23, 2018. This conference provided a forum for academics, researchers and engineers to share and exchange R&D experience on both theoretical studies and practical applications of the ELM technique and brain learning.
Extreme Learning Machines (ELM) aims to enable pervasive learning and pervasive intelligence. As advocated by ELM theories, it is exciting to see the convergence of machine learning and biological learning from the long-term point of view. ELM may be one of the fundamental "learning particles" filling the gaps between machine learning and biological learning (of which activation functions are even unknown). ELM represents a suite of (machine and biological) learning techniques in which hidden neurons need not be tuned: inherited from their ancestors or randomly generated. ELM learning theories show that effective learning algorithms can be derived based on randomly generated hidden neurons (biological neurons, artificial neurons, wavelets, Fourier series, etc.) as long as they are nonlinear piecewise continuous, independent of training data and application environments. Increasingly, evidence from neuroscience suggests that similar principles apply in biological learning systems. ELM theories and algorithms argue that "random hidden neurons" capture an essential aspect of biological learning mechanisms as well as the intuitive sense that the efficiency of biological learning need not rely on computing power of neurons. ELM theories thus hint at possible reasons why the brain is more intelligent and effective than current computers. The main theme of ELM2018 is Hierarchical ELM, AI for IoT, Synergy of Machine Learning and Biological Learning.

This book covers theories, algorithms and applications of ELM. It gives readers a glance at the most recent advances of ELM.

 

Dettagli sul prodotto

Con la collaborazione di Jiuwen Cao (Editore), Amaury Lendasse (Editore), Ch Man Vong (Editore), Chi Man Vong (Editore), Yoan Miche (Editore), Yoan Miche et al (Editore), Chi Man Vong (Editore)
Editore Springer, Berlin
 
Lingue Inglese
Formato Tascabile
Pubblicazione 01.08.2020
 
EAN 9783030233099
ISBN 978-3-0-3023309-9
Pagine 347
Dimensioni 155 mm x 19 mm x 235 mm
Illustrazioni VIII, 347 p. 109 illus., 79 illus. in color.
Serie Proceedings in Adaptation, Learning and Optimization
Categoria Scienze naturali, medicina, informatica, tecnica > Tecnica > Tematiche generali, enciclopedie

Recensioni dei clienti

Per questo articolo non c'è ancora nessuna recensione. Scrivi la prima recensione e aiuta gli altri utenti a scegliere.

Scrivi una recensione

Top o flop? Scrivi la tua recensione.

Per i messaggi a CeDe.ch si prega di utilizzare il modulo di contatto.

I campi contrassegnati da * sono obbligatori.

Inviando questo modulo si accetta la nostra dichiarazione protezione dati.