Fr. 166.00

Variations on a Theme of Borel - An Essay on the Role of the Fundamental Group in Rigidity

Inglese · Copertina rigida

Spedizione di solito entro 3 a 5 settimane

Descrizione

Ulteriori informazioni










Shmuel Weinberger describes here analogies between geometric topology, differential geometry, group theory, global analysis, and noncommutative geometry. He develops deep tools in a setting where they have immediate application. The connections between these fields enrich each and shed light on one another.

Sommario










1. Introduction; 2. Examples of aspherical manifolds; 3. First contact - The proper category; 4. How can it be true?; 5. Playing the Novikov game; 6. Equivariant Borel conjecture; 7. Existential problems; 8. Epilogue - A survey of some techniques; References; Index.

Info autore

Shmuel Weinberger is Andrew MacLeish Professor of Mathematics at the University of Chicago. His work is on geometry and topology and their applications. To Weinberger, the only thing cooler than discovering some new geometric result (by any method from any area of mathematics) is discovering a hidden geometric side to the seemingly 'ungeometric'. He has written two other books, one on stratified spaces, and the other on the large-scale structure of spaces of Riemannian metrics using tools from logic. An inaugural Fellow of the American Mathematical Society, he is also a Fellow of the American Academy for the Advancement of Science.

Riassunto

Shmuel Weinberger describes here analogies between geometric topology, differential geometry, group theory, global analysis, and noncommutative geometry. He develops deep tools in a setting where they have immediate application. The connections between these fields enrich each and shed light on one another.

Recensioni dei clienti

Per questo articolo non c'è ancora nessuna recensione. Scrivi la prima recensione e aiuta gli altri utenti a scegliere.

Scrivi una recensione

Top o flop? Scrivi la tua recensione.

Per i messaggi a CeDe.ch si prega di utilizzare il modulo di contatto.

I campi contrassegnati da * sono obbligatori.

Inviando questo modulo si accetta la nostra dichiarazione protezione dati.