Ulteriori informazioni
Sommario
Introduction. Ordinary differential equations. Common partial differential equations of computational hydraulics. Flow in pressurized conduits. Free surface flows. Surface gravity water waves. Flow in porous media. Contaminant and sediment transport by advection and diffusion. Other numerical methods. References.
Info autore
Christopher Koutitas graduated from the Department of Civil Engineering at Aristotle University of Thessaloniki (AUTh) in 1970. He attended the graduate program in water resources and earned an MSE from the Department of Civil and Geological Engineering at Princeton University in 1971. He earned a doctorate from the Department of Civil Engineering at AUTh in 1976. His main research activity area is computational modelling in coastal and harbor engineering, aiming at the technically and environmentally optimal design of coastal structures. Dr. Koutitas has published more than 200 papers and two relevant books. He is now a professor emeritus of AUTh.Panagiotis D. Scarlatos earned his diploma degree (1972) and doctorate degree (1981) in civil engineering from the Aristotle University of Thessaloniki, Greece. In 1989 he joined Florida Atlantic University as a faculty member of the Ocean Engineering Department before moving to the Civil, Environmental and Geomatics Department. He is currently a professor in the same department and director of the Center for Intermodal Transportation Safety and Security. He has written more than 130 technical publications, and has served as an expert witness in a variety of national and international cases pertaining to water resources and related infrastructure.
Riassunto
Computational simulation methods have a range of applications in hydraulic and coastal engineering. This textbook provides an introductory but comprehensive coverage of these methods. It emphasizes the finite differences method with applications in reservoir management, closed-conduit hydraulics, free-surface channel flows, surface gravity waves