Fr. 90.00

Mathematical Analysis of the Navier-Stokes Equations - Cetraro, Italy 2017

Inglese · Tascabile

Spedizione di solito entro 1 a 2 settimane (il titolo viene stampato sull'ordine)

Descrizione

Ulteriori informazioni

This book collects together a unique set of articles dedicated to several fundamental aspects of the Navier-Stokes equations. As is well known, understanding the mathematical properties of these equations, along with their physical interpretation, constitutes one of the most challenging questions of applied mathematics. Indeed, the Navier-Stokes equations feature among the Clay Mathematics Institute's seven Millennium Prize Problems (existence of global in time, regular solutions corresponding to initial data of unrestricted magnitude).   
The text comprises three extensive contributions covering the following topics: (1) Operator-Valued H -calculus, R-boundedness, Fourier multipliers and maximal Lp-regularity theory for a large, abstract class of quasi-linear evolution problems with applications to Navier-Stokes equations and other fluid model equations; (2)  Classical existence, uniqueness and regularity theorems of solutions to the Navier-Stokes initial-value problem, along with space-time partial regularity and investigation of the smoothness of the Lagrangean flow map; and (3) A complete mathematical theory of R-boundedness and maximal regularity with applications to free boundary problems for the Navier-Stokes equations with and without surface tension.
Offering a general mathematical framework that could be used to study fluid problems and, more generally, a wide class of abstract evolution equations, this volume is aimed at graduate students and researchers who want to become acquainted with fundamental problems related to the Navier-Stokes equations. 

Sommario


Giovanni P. Galdi, Yoshihiro Shibata: Preface.- Matthias Hieber: Analysis of Viscous Fluid Flows: An Approach by Evolution Equations.- James C. Robinson: Partial regularity for the 3D Navier-Stokes equations.- Yoshihiro ShibataBoundedness, Maximal Regularity and Free Boundary Problems for the Navier Stokes Equations.

Dettagli sul prodotto

Autori Matthia Hieber, Matthias Hieber, James Robinson, James C Robinson, James C. Robinson, Yoshih Shibata, Yoshihiro Shibata
Con la collaborazione di Giovanni P. Galdi (Editore), Giovann P Galdi (Editore), Giovanni P Galdi (Editore), SHIBATA (Editore), Shibata (Editore), Yoshihiro Shibata (Editore)
Editore Springer, Berlin
 
Lingue Inglese
Formato Tascabile
Pubblicazione 01.04.2020
 
EAN 9783030362256
ISBN 978-3-0-3036225-6
Pagine 464
Dimensioni 159 mm x 28 mm x 237 mm
Peso 709 g
Illustrazioni VII, 464 p. 3 illus.
Serie Lecture Notes in Mathematics
C.I.M.E. Foundation Subseries
Categoria Scienze naturali, medicina, informatica, tecnica > Matematica > Analisi

Recensioni dei clienti

Per questo articolo non c'è ancora nessuna recensione. Scrivi la prima recensione e aiuta gli altri utenti a scegliere.

Scrivi una recensione

Top o flop? Scrivi la tua recensione.

Per i messaggi a CeDe.ch si prega di utilizzare il modulo di contatto.

I campi contrassegnati da * sono obbligatori.

Inviando questo modulo si accetta la nostra dichiarazione protezione dati.