Fr. 130.90

Topological Degree Theory and Applications

Inglese · Tascabile

Spedizione di solito entro 1 a 3 settimane (non disponibile a breve termine)

Descrizione

Ulteriori informazioni










Since the 1960s, many researchers have extended topological degree theory to various non-compact type nonlinear mappings, Presenting a survey of advances made in generalizations of degree theory during the past decade, this book focuses on topological degree theory in normed spaces and its applications. It includes discussions on a degree theory for new monotone maps and A-proper Fredholm maps of index-zero type and presents a recently developed fixed point index for countably condensing maps. Applications to ordinary and partial differential equations and evolution equations are presented throughout the book, and each chapter includes exercises suitable for self-study and special topics courses.

Sommario

Brouwer Degree Theory. Leray-Schauder Degree Theory. Degree Theory for Set-Contraction Mappings. Generalized Degree Theory for A-Proper Mappings. Coincidence Degree Theory. Degree Theory for Monotone Type Mappings. Fixed Point Index Theory. References. Index.

Info autore










Cho, Yeol Je; Chen, Yu-Qing

Riassunto

Since the 1960s, many researchers have extended topological degree theory to various non-compact type nonlinear mappings, and it has become a valuable tool in nonlinear analysis. Presenting a survey of advances made in generalizations of degree theory during the past decade, this book focuses on topological degree theory in normed spaces and its applications.

The authors begin by introducing the Brouwer degree theory in Rn, then consider the Leray-Schauder degree for compact mappings in normed spaces. Next, they explore the degree theory for condensing mappings, including applications to ODEs in Banach spaces. This is followed by a study of degree theory for A-proper mappings and its applications to semilinear operator equations with Fredholm mappings and periodic boundary value problems. The focus then turns to construction of Mawhin's coincidence degree for L-compact mappings, followed by a presentation of a degree theory for mappings of class (S+) and its perturbations with other monotone-type mappings. The final chapter studies the fixed point index theory in a cone of a Banach space and presents a notable new fixed point index for countably condensing maps.

Examples and exercises complement each chapter. With its blend of old and new techniques, Topological Degree Theory and Applications forms an outstanding text for self-study or special topics courses and a valuable reference for anyone working in differential equations, analysis, or topology.

Dettagli sul prodotto

Autori Yu-Qing Chen, Yeol Je Cho, Yeol Je Chen Cho
Editore Taylor & Francis Ltd.
 
Lingue Inglese
Formato Tascabile
Pubblicazione 31.08.2019
 
EAN 9780367390983
ISBN 978-0-367-39098-3
Pagine 232
Serie Mathematical Analysis and Applications
Categoria Scienze naturali, medicina, informatica, tecnica > Fisica, astronomia > Tematiche generali, enciclopedie

Recensioni dei clienti

Per questo articolo non c'è ancora nessuna recensione. Scrivi la prima recensione e aiuta gli altri utenti a scegliere.

Scrivi una recensione

Top o flop? Scrivi la tua recensione.

Per i messaggi a CeDe.ch si prega di utilizzare il modulo di contatto.

I campi contrassegnati da * sono obbligatori.

Inviando questo modulo si accetta la nostra dichiarazione protezione dati.