Fr. 84.00

Real Analysis and Applications

Inglese · Tascabile

Spedizione di solito entro 6 a 7 settimane

Descrizione

Ulteriori informazioni

This textbook introduces readers to real analysis in one and n dimensions. It is divided into two parts: Part I explores real analysis in one variable, starting with key concepts such as the construction of the real number system, metric spaces, and real sequences and series. In turn, Part II addresses the multi-variable aspects of real analysis. Further, the book presents detailed, rigorous proofs of the implicit theorem for the vectorial case by applying the Banach fixed-point theorem and the differential forms concept to surfaces in Rn. It also provides a brief introduction to Riemannian geometry. 
With its rigorous, elegant proofs, this self-contained work is easy to read, making it suitable for undergraduate and beginning graduate students seeking a deeper understanding of real analysis and applications, and for all those looking for a well-founded, detailed approach to real analysis.

Sommario

Chapter 01- Real Numbers.- Chapter 02- Metric Spaces.- Chapter 03- Real Sequences and Series.- Chapter 04- Real Function Limits.- Chapter 05- Continuous Functions.- Chapter 06- Derivatives.- Chapter 07- The Riemann Integral.- Chapter 08- Differential Analysis in Rn.- Chapter 09- Integration in Rn.- Chapter 10- Topics on Vector Calculus and Vector Analysis.

Info autore

Fabio Botelho holds a PhD in Mathematics from Virginia Tech, USA, and a Master in Aeronautics and Mechanics Engineering from the Aeronautics Institute of Technology, Brazil. He is the author of the book "Functional Analysis and Applied Optimization in Banach Spaces," also published with Springer. His main research fields are calculus of variations, convex analysis and duality applied to problems in physics and engineering.

Riassunto

This textbook introduces readers to real analysis in one and n dimensions. It is divided into two parts: Part I explores real analysis in one variable, starting with key concepts such as the construction of the real number system, metric spaces, and real sequences and series. In turn, Part II addresses the multi-variable aspects of real analysis. Further, the book presents detailed, rigorous proofs of the implicit theorem for the vectorial case by applying the Banach fixed-point theorem and the differential forms concept to surfaces in Rn. It also provides a brief introduction to Riemannian geometry. 
With its rigorous, elegant proofs, this self-contained work is easy to read, making it suitable for undergraduate and beginning graduate students seeking a deeper understanding of real analysis and applications, and for all those looking for a well-founded, detailed approach to real analysis.

Dettagli sul prodotto

Autori Fabio Silva Botelho
Editore Springer, Berlin
 
Lingue Inglese
Formato Tascabile
Pubblicazione 01.01.2018
 
EAN 9783030087500
ISBN 978-3-0-3008750-0
Pagine 567
Dimensioni 155 mm x 235 mm x 39 mm
Peso 884 g
Illustrazioni XIII, 567 p.
Categorie Scienze naturali, medicina, informatica, tecnica > Matematica > Analisi

B, Mathematische Analysis, allgemein, measure theory, Mathematics and Statistics, Real Functions, Functions of real variables, Sequences, Series, Summability, Calculus & mathematical analysis, Sequences (Mathematics), Integral calculus & equations, Measure and Integration

Recensioni dei clienti

Per questo articolo non c'è ancora nessuna recensione. Scrivi la prima recensione e aiuta gli altri utenti a scegliere.

Scrivi una recensione

Top o flop? Scrivi la tua recensione.

Per i messaggi a CeDe.ch si prega di utilizzare il modulo di contatto.

I campi contrassegnati da * sono obbligatori.

Inviando questo modulo si accetta la nostra dichiarazione protezione dati.