Fr. 179.00

Statistical Distributions - Applications and Parameter Estimates

Inglese · Tascabile

Spedizione di solito entro 6 a 7 settimane

Descrizione

Ulteriori informazioni

This book gives a description of the group of statistical distributions that have ample application to studies in statistics and probability. Understanding statistical distributions is fundamental for researchers in almost all disciplines.  The informed researcher will select the statistical distribution that best fits the data in the study at hand.   Some of the distributions are well known to the general researcher and are in use in a wide variety of ways.  Other useful distributions are less understood and are not in common use.  The book describes when and how to apply each of the distributions in research studies, with a goal to identify the distribution that best applies to the study.  The distributions are for continuous, discrete, and bivariate random variables.  In most studies, the parameter values are not known a priori, and sample data is needed to estimate parameter values.  In other scenarios, no sample data is available, andthe researcher seeks some insight that allows the estimate of the parameter values to be gained.
This handbook of statistical distributions provides a working knowledge of applying common and uncommon statistical distributions in research studies.  These nineteen distributions are: continuous uniform, exponential, Erlang, gamma, beta, Weibull, normal, lognormal, left-truncated normal, right-truncated normal, triangular, discrete uniform, binomial, geometric, Pascal, Poisson, hyper-geometric, bivariate normal, and bivariate lognormal.  Some are from continuous data and others are from discrete and bivariate data.  This group of statistical distributions has ample application to studies in statistics and probability and practical use in real situations.  Additionally, this book explains computing the cumulative probability of each distribution and estimating the parameter values either with sample data or without sample data.  Examples are providedthroughout to guide the reader.

Accuracy in choosing and applying statistical distributions is particularly imperative for anyone who does statistical and probability analysis, including management scientists, market researchers, engineers, mathematicians, physicists, chemists, economists, social science researchers, and students in many disciplines.

Sommario

Statistical Concepts.- Continuous Uniform.- Exponential.- Erlang.- Gamma.- Beta.- Weibull.- Normal.- Lognormal.- Left Truncated Normal.- Right Truncated Normal.- Triangular.- Discrete Uniform.- Binomial.- Geometric.- Pascal.- Poisson.- Hyper-Geometric.- Bivariate Normal.- Bivariate Lognormal.

Info autore

Nick T. Thomopoulos, Ph.D., has degrees in business (B.S.) and in mathematics (M.A.) from the University of Illinois, and in industrial engineering (Ph.D.) from Illinois Institute of Technology (Illinois Tech). He was supervisor of operations research at International Harvester; senior scientist at Illinois Tech Research Institute; Professor in Industrial Engineering, and in the Stuart School of Business at Illinois Tech. He is the author of eleven books including Fundamentals of Queuing Systems (Springer), Essentials of Monte Carlo Simulation (Springer), Applied Forecasting Methods (Prentice Hall), and Fundamentals of Production, Inventory and the Supply Chain (Atlantic). He has published many papers and has consulted in a wide variety of industries in the United States, Europe and Asia. Dr. Thomopoulos has received honors over the years, such as the Rist Prize from the Military Operations Research Society for new developments in queuing theory; the Distinguished Professor Award in Bangkok, Thailand from the Illinois Tech Asian Alumni Association; and the Professional Achievement Award from the Illinois Tech Alumni Association. 

Riassunto

This book gives a description of the group of statistical distributions that have ample application to studies in statistics and probability. Understanding statistical distributions is fundamental for researchers in almost all disciplines.  The informed researcher will select the statistical distribution that best fits the data in the study at hand.   Some of the distributions are well known to the general researcher and are in use in a wide variety of ways.  Other useful distributions are less understood and are not in common use.  The book describes when and how to apply each of the distributions in research studies, with a goal to identify the distribution that best applies to the study.  The distributions are for continuous, discrete, and bivariate random variables.  In most studies, the parameter values are not known a priori, and sample data is needed to estimate parameter values.  In other scenarios, no sample data is available, andthe researcher seeks some insight that allows the estimate of the parameter values to be gained.

This handbook of statistical distributions provides a working knowledge of applying common and uncommon statistical distributions in research studies.  These nineteen distributions are: continuous uniform, exponential, Erlang, gamma, beta, Weibull, normal, lognormal, left-truncated normal, right-truncated normal, triangular, discrete uniform, binomial, geometric, Pascal, Poisson, hyper-geometric, bivariate normal, and bivariate lognormal.  Some are from continuous data and others are from discrete and bivariate data.  This group of statistical distributions has ample application to studies in statistics and probability and practical use in real situations.  Additionally, this book explains computing the cumulative probability of each distribution and estimating the parameter values either with sample data or without sample data.  Examples are providedthroughout to guide the reader.

Accuracy in choosing and applying statistical distributions is particularly imperative for anyone who does statistical and probability analysis, including management scientists, market researchers, engineers, mathematicians, physicists, chemists, economists, social science researchers, and students in many disciplines.

Testo aggiuntivo

“The book is very reader-friendly written, with numerous numerical examples, clarifying graphs and explanations, and it can be useful for students, researchers, and practitioners applying statistics and probability evaluations in their studies.” (Stan Lipovetsky, Technometrics, Vol. 60 (2), 2018)

Relazione

"The book is very reader-friendly written, with numerous numerical examples, clarifying graphs and explanations, and it can be useful for students, researchers, and practitioners applying statistics and probability evaluations in their studies." (Stan Lipovetsky, Technometrics, Vol. 60 (2), 2018)

Dettagli sul prodotto

Autori Nick T Thomopoulos, Nick T. Thomopoulos
Editore Springer, Berlin
 
Lingue Inglese
Formato Tascabile
Pubblicazione 01.01.2018
 
EAN 9783319879529
ISBN 978-3-31-987952-9
Pagine 172
Dimensioni 156 mm x 11 mm x 233 mm
Peso 302 g
Illustrazioni XVII, 172 p. 22 illus., 21 illus. in color.
Categorie Scienze naturali, medicina, informatica, tecnica > Matematica > Teoria delle probabilità, stocastica, statistica matematica

Stochastik, B, Statistics, Mathematics and Statistics, Statistical Theory and Methods, Probability Theory and Stochastic Processes, Probability & statistics, Probabilities, Stochastics, Probability Theory, parameter estimates, maximum likelihood estimator, statistical distributions

Recensioni dei clienti

Per questo articolo non c'è ancora nessuna recensione. Scrivi la prima recensione e aiuta gli altri utenti a scegliere.

Scrivi una recensione

Top o flop? Scrivi la tua recensione.

Per i messaggi a CeDe.ch si prega di utilizzare il modulo di contatto.

I campi contrassegnati da * sono obbligatori.

Inviando questo modulo si accetta la nostra dichiarazione protezione dati.