Fr. 169.00

Linear and Quasilinear Parabolic Problems - Volume II: Function Spaces

Inglese · Copertina rigida

Spedizione di solito entro 6 a 7 settimane

Descrizione

Ulteriori informazioni

This volume discusses an in-depth theory of function spaces in an Euclidean setting, including several new features, not previously covered in the literature. In particular, it develops a unified theory of anisotropic Besov and Bessel potential spaces on Euclidean corners, with infinite-dimensional Banach spaces as targets.
It especially highlights the most important subclasses of Besov spaces, namely Slobodeckii and Hölder spaces. In this case, no restrictions are imposed on the target spaces, except for reflexivity assumptions in duality results. In this general setting, the author proves sharp embedding, interpolation, and trace theorems, point-wise multiplier results, as well as Gagliardo-Nirenberg estimates and generalizations of Aubin-Lions compactness theorems.
The results presented pave the way for new applications in situations where infinite-dimensional target spaces are relevant - in the realm of stochastic differential equations, for example.


Sommario

Restriction-Extension Pairs.- Sequence Spaces.- Anisotropy.- Classical Spaces.- Besov Spaces.- Intrinsic Norms, Slobodeckii and Hölder Spaces.- Bessel Potential Spaces.- Triebel-Lizorkin Spaces.- Point-Wise Multiplications.- Compactness.- Parameter-Dependent Spaces.

Riassunto

This volume discusses an in-depth theory of function spaces in an Euclidean setting, including several new features, not previously covered in the literature. In particular, it develops a unified theory of anisotropic Besov and Bessel potential spaces on Euclidean corners, with infinite-dimensional Banach spaces as targets.
It especially highlights the most important subclasses of Besov spaces, namely Slobodeckii and Hölder spaces. In this case, no restrictions are imposed on the target spaces, except for reflexivity assumptions in duality results. In this general setting, the author proves sharp embedding, interpolation, and trace theorems, point-wise multiplier results, as well as Gagliardo-Nirenberg estimates and generalizations of Aubin-Lions compactness theorems.
The results presented pave the way for new applications in situations where infinite-dimensional target spaces are relevant – in the realm of stochastic differential equations, for example.

Dettagli sul prodotto

Autori Herbert Amann
Editore Springer, Berlin
 
Lingue Inglese
Formato Copertina rigida
Pubblicazione 01.01.2019
 
EAN 9783030117627
ISBN 978-3-0-3011762-7
Pagine 462
Dimensioni 157 mm x 239 mm x 241 mm
Peso 890 g
Illustrazioni XVI, 462 p.
Serie Monographs in Mathematics
Monographs in Mathematics
Categorie Scienze naturali, medicina, informatica, tecnica > Matematica > Analisi

B, Mathematics and Statistics, Functional Analysis, Besov Spaces, Anisotropy, Sequence Spaces

Recensioni dei clienti

Per questo articolo non c'è ancora nessuna recensione. Scrivi la prima recensione e aiuta gli altri utenti a scegliere.

Scrivi una recensione

Top o flop? Scrivi la tua recensione.

Per i messaggi a CeDe.ch si prega di utilizzare il modulo di contatto.

I campi contrassegnati da * sono obbligatori.

Inviando questo modulo si accetta la nostra dichiarazione protezione dati.