Fr. 215.00

Handbook of Deep Learning Applications

Inglese · Copertina rigida

Spedizione di solito entro 2 a 3 settimane (il titolo viene stampato sull'ordine)

Descrizione

Ulteriori informazioni



This book presents a broad range of deep-learning applications related to vision, natural language processing, gene expression, arbitrary object recognition, driverless cars, semantic image segmentation, deep visual residual abstraction, brain-computer interfaces, big data processing, hierarchical deep learning networks as game-playing artefacts using regret matching, and building GPU-accelerated deep learning frameworks. Deep learning, an advanced level of machine learning technique that combines class of learning algorithms with the use of many layers of nonlinear units, has gained considerable attention in recent times. Unlike other books on the market, this volume addresses the challenges of deep learning implementation, computation time, and the complexity of reasoning and modeling different type of data. As such, it is a valuable and comprehensive resource for engineers, researchers, graduate students and Ph.D. scholars.

Sommario

Designing a Neural Network from scratch for Big Data powered by Multi-node GPUs.- Deep Learning for Scene Understanding.- Deep Learning for Driverless Vehicles.- Deep Learning for Document Representation.- Deep learning for marine species recognition.- Deep molecular representation in Cheminformatics.- Deep Learning in eHealth.- Deep Learning for Brain Computer Interfaces.- Deep Learning in Gene Expression Modeling.

Riassunto

This book presents a broad range of deep-learning applications related to vision, natural language processing, gene expression, arbitrary object recognition, driverless cars, semantic image segmentation, deep visual residual abstraction, brain–computer interfaces, big data processing, hierarchical deep learning networks as game-playing artefacts using regret matching, and building GPU-accelerated deep learning frameworks. Deep learning, an advanced level of machine learning technique that combines class of learning algorithms with the use of many layers of nonlinear units, has gained considerable attention in recent times. Unlike other books on the market, this volume addresses the challenges of deep learning implementation, computation time, and the complexity of reasoning and modeling different type of data. As such, it is a valuable and comprehensive resource for engineers, researchers, graduate students and Ph.D. scholars.

Dettagli sul prodotto

Con la collaborazione di Valentina Balas (Editore), Valentina E. Balas (Editore), Valentina Emilia Balas (Editore), Sanjiban Sekhar Roy (Editore), Pijush Samui (Editore), Sanjiba Sekhar Roy (Editore), Sanjiban Sekhar Roy (Editore), Dharmendra Sharma (Editore), Dharmendra Sharma et al (Editore)
Editore Springer, Berlin
 
Lingue Inglese
Formato Copertina rigida
Pubblicazione 01.01.2019
 
EAN 9783030114787
ISBN 978-3-0-3011478-7
Pagine 383
Dimensioni 158 mm x 236 mm x 242 mm
Peso 744 g
Illustrazioni VI, 383 p. 181 illus., 127 illus. in color.
Serie Smart Innovation, Systems and Technologies
Smart Innovation, Systems and Technologies
Categoria Scienze naturali, medicina, informatica, tecnica > Tecnica > Tematiche generali, enciclopedie

Recensioni dei clienti

Per questo articolo non c'è ancora nessuna recensione. Scrivi la prima recensione e aiuta gli altri utenti a scegliere.

Scrivi una recensione

Top o flop? Scrivi la tua recensione.

Per i messaggi a CeDe.ch si prega di utilizzare il modulo di contatto.

I campi contrassegnati da * sono obbligatori.

Inviando questo modulo si accetta la nostra dichiarazione protezione dati.