Fr. 189.00

Deep Learning: Fundamentals, Theory and Applications

Inglese · Copertina rigida

Spedizione di solito entro 6 a 7 settimane

Descrizione

Ulteriori informazioni

The purpose of this edited volume is to provide a comprehensive overview on the fundamentals of deep learning, introduce the widely-used learning architectures and algorithms, present its latest theoretical progress, discuss the most popular deep learning platforms and data sets, and describe how many deep learning methodologies have brought great breakthroughs in various applications of text, image, video, speech and audio processing.
Deep learning (DL) has been widely considered as the next generation of machine learning methodology. DL attracts much attention and also achieves great success in pattern recognition, computer vision, data mining, and knowledge discovery due to its great capability in learning high-level abstract features from vast amount of data. This new book will not only attempt to provide a general roadmap or guidance to the current deep learning methodologies, but also present the challenges and envision new perspectives which may lead to further breakthroughs in this field.

This book will serve as a useful reference for senior (undergraduate or graduate) students in computer science, statistics, electrical engineering, as well as others interested in studying or exploring the potential of exploiting deep learning algorithms. It will also be of special interest to researchers in the area of AI, pattern recognition, machine learning and related areas, alongside engineers interested in applying deep learning models in existing or new practical applications.

Sommario

Preface.- Introduction to Deep Density Models with Latent Variables.- Deep RNN Architecture: Design and Evaluation.- Deep Learning Based Handwritten Chinese Character and Text Recognition.- Deep Learning and Its Applications to Natural Language Processing.- Deep Learning for Natural Language Processing.- Oceanic Data Analysis with Deep Learning Models.- Index.

Riassunto

The purpose of this edited volume is to provide a comprehensive overview on the fundamentals of deep learning, introduce the widely-used learning architectures and algorithms, present its latest theoretical progress, discuss the most popular deep learning platforms and data sets, and describe how many deep learning methodologies have brought great breakthroughs in various applications of text, image, video, speech and audio processing.
Deep learning (DL) has been widely considered as the next generation of machine learning methodology. DL attracts much attention and also achieves great success in pattern recognition, computer vision, data mining, and knowledge discovery due to its great capability in learning high-level abstract features from vast amount of data. This new book will not only attempt to provide a general roadmap or guidance to the current deep learning methodologies, but also present the challenges and envision new perspectives which may lead to further breakthroughs in this field.

This book will serve as a useful reference for senior (undergraduate or graduate) students in computer science, statistics, electrical engineering, as well as others interested in studying or exploring the potential of exploiting deep learning algorithms. It will also be of special interest to researchers in the area of AI, pattern recognition, machine learning and related areas, alongside engineers interested in applying deep learning models in existing or new practical applications.

Testo aggiuntivo

“This reviewer maintains skepticism about how accessible this book is to the typical undergraduate. However, a senior level graduate student may find incredible value in the exposition. The practitioner may enjoy this text as a companion to an existing library as well as a muse for modifying current methodologies by those cited in the research papers.” (Mannan Shah, MAA Reviews, September 22, 2019)

Relazione

"This reviewer maintains skepticism about how accessible this book is to the typical undergraduate. However, a senior level graduate student may find incredible value in the exposition. The practitioner may enjoy this text as a companion to an existing library as well as a muse for modifying current methodologies by those cited in the research papers." (Mannan Shah, MAA Reviews, September 22, 2019)

Dettagli sul prodotto

Con la collaborazione di Kaizhu Huang (Editore), Ami Hussain (Editore), Amir Hussain (Editore), Qiu-Feng Wang (Editore), Qiu-Feng Wang et al (Editore), Rui Zhang (Editore)
Editore Springer, Berlin
 
Lingue Inglese
Formato Copertina rigida
Pubblicazione 01.01.2019
 
EAN 9783030060725
ISBN 978-3-0-3006072-5
Pagine 163
Dimensioni 162 mm x 242 mm x 14 mm
Peso 432 g
Illustrazioni VII, 163 p. 66 illus., 46 illus. in color.
Serie Cognitive Computation Trends
Cognitive Computation Trends
Categorie Scienze naturali, medicina, informatica, tecnica > Medicina > Branche non cliniche

B, Künstliche Intelligenz, Algorithmen und Datenstrukturen, Medicine, Algorithms, Artificial Intelligence, Biomedical and Life Sciences, Numerical analysis, Biomedicine, general, Biomedical Research

Recensioni dei clienti

Per questo articolo non c'è ancora nessuna recensione. Scrivi la prima recensione e aiuta gli altri utenti a scegliere.

Scrivi una recensione

Top o flop? Scrivi la tua recensione.

Per i messaggi a CeDe.ch si prega di utilizzare il modulo di contatto.

I campi contrassegnati da * sono obbligatori.

Inviando questo modulo si accetta la nostra dichiarazione protezione dati.