Fr. 215.00

Advances in Independent Component Analysis

Inglese · Tascabile

Spedizione di solito entro 1 a 2 settimane (il titolo viene stampato sull'ordine)

Descrizione

Ulteriori informazioni

Independent Component Analysis (ICA) is a fast developing area of intense research interest. Following on from Self-Organising Neural Networks: Independent Component Analysis and Blind Signal Separation, this book reviews the significant developments of the past year.
It covers topics such as the use of hidden Markov methods, the independence assumption, and topographic ICA, and includes tutorial chapters on Bayesian and variational approaches. It also provides the latest approaches to ICA problems, including an investigation into certain "hard problems" for the very first time.
Comprising contributions from the most respected and innovative researchers in the field, this volume will be of interest to students and researchers in computer science and electrical engineering; research and development personnel in disciplines such as statistical modelling and data analysis; bio-informatic workers; and physicists and chemists requiring novel data analysis methods.

Sommario

I Temporal ICA Models.- 1 Hidden Markov Independent Component Analysis.- 2 Particle Filters for Non-Stationary ICA.- II The Validity of the Independence Assumption.- 3 The Independence Assumption: Analyzing the Independence of the Components by Topography.- 4 The Independence Assumption: Dependent Component Analysis.- III Ensemble Learning and Applications.- 5 Ensemble Learning.- 6 Bayesian Non-Linear Independent Component Analysis by Multi-Layer Perceptrons.- 7 Ensemble Learning for Blind Image Separation and Deconvolution.- IV Data Analysis and Applications.- 8 Multi-Class Independent Component Analysis (MUCICA) for Rank-Deficient Distributions.- 9 Blind Separation of Noisy Image Mixtures.- 10 Searching for Independence in Electromagnetic Brain Waves.- 11 ICA on Noisy Data: A Factor Analysis Approach.- 12 Analysis of Optical Imaging Data Using Weak Models and ICA.- 13 Independent Components in Text.- 14 Seeking Independence Using Biologically-Inspired ANN's.

Dettagli sul prodotto

Con la collaborazione di Mar Girolami (Editore), Mark Girolami (Editore)
Editore Springer, Berlin
 
Lingue Inglese
Formato Tascabile
Pubblicazione 02.04.2002
 
EAN 9781852332631
ISBN 978-1-85233-263-1
Pagine 284
Peso 458 g
Illustrazioni XX, 284 p. 19 illus.
Serie Perspectives in Neural Computing
Perspectives in Neural Computing
Categoria Scienze naturali, medicina, informatica, tecnica > Informatica, EDP > Informatica

Recensioni dei clienti

Per questo articolo non c'è ancora nessuna recensione. Scrivi la prima recensione e aiuta gli altri utenti a scegliere.

Scrivi una recensione

Top o flop? Scrivi la tua recensione.

Per i messaggi a CeDe.ch si prega di utilizzare il modulo di contatto.

I campi contrassegnati da * sono obbligatori.

Inviando questo modulo si accetta la nostra dichiarazione protezione dati.