Fr. 100.00

Hardy Spaces

Inglese · Copertina rigida

Spedizione di solito entro 1 a 3 settimane (non disponibile a breve termine)

Descrizione

Ulteriori informazioni

Informationen zum Autor Nikolaï Nikolski is Professor Emeritus at the Université de Bordeaux working primarily in analysis and operator theory. He has been co-editor of four international journals and published numerous articles and research monographs. He has also supervised some thirty Ph.D. students, including three Salem Prize winners. Professor Nikolski was elected Fellow of the American Mathematical Society (AMS) in 2013 and received the Prix Ampère of the French Academy of Sciences in 2010. Klappentext Graduate text covering the theory of Hardy spaces from its origins to the present, with concrete applications and solved exercises. Zusammenfassung Designed for beginning graduate students, this book introduces and develops the classical results on Hardy spaces and applies them to fundamental problems in modern analysis. With solved exercises, short surveys of recent developments, and engaging accounts of the field's main contributors, this book is the ideal source on Hardy spaces. Inhaltsverzeichnis The origins of the subject; 1. The space H^2(T). An archetypal invariant subspace; 2. The H^p(D) classes. Canonical factorization and first applications; 3. The Smirnov class D and the maximum principle; 4. An introduction to weighted Fourier analysis; 5. Harmonic analysis and stationary filtering; 6. The Riemann hypothesis, dilations, and H^2 in the Hilbert multi-disk; Appendix A. Key notions of integration; Appendix B. Key notions of complex analysis; Appendix C. Key notions of Hilbert spaces; Appendix D. Key notions of Banach spaces; Appendix E. Key notions of linear operators; References; Notation; Index.

Recensioni dei clienti

Per questo articolo non c'è ancora nessuna recensione. Scrivi la prima recensione e aiuta gli altri utenti a scegliere.

Scrivi una recensione

Top o flop? Scrivi la tua recensione.

Per i messaggi a CeDe.ch si prega di utilizzare il modulo di contatto.

I campi contrassegnati da * sono obbligatori.

Inviando questo modulo si accetta la nostra dichiarazione protezione dati.