Fr. 189.00

Mathematical Modelling in Plant Biology

Inglese · Copertina rigida

Spedizione di solito entro 6 a 7 settimane

Descrizione

Ulteriori informazioni

Progress in plant biology relies on the quantification, analysis and mathematical modeling of data over different time and length scales. This book describes common mathematical and computational approaches as well as some carefully chosen case studies that demonstrate the use of these techniques to solve problems at the forefront of plant biology. Each chapter is written by an expert in field with the goal of conveying concepts whilst at the same time providing sufficient background and links to available software for readers to rapidly build their own models and run their own simulations. This book is aimed at postgraduate students and researchers working the field of plant systems biology and synthetic biology, but will also be a useful reference for anyone wanting to get into quantitative plant biology.

Sommario

Physical Models of Plant Morphogenesis.- Fluid Transport in Plants.- Modelling Ion Channels.- Modelling the Plant Microtubule Cytoskeleton.- Bridging Scales from Protein Function to Whole-plant Water Relations with the OnGuard Platform.- Single-cell Approaches for Understanding Morphogenesis Using Computational Morphodynamics.- Modeling Plant Tissue Growth and Cell Division.- Modeling Plant Development with L-systems.- Flowering Time as a Model Trait to Bridge Proximate and Evolutionary Questions.- All but Sleeping? Consequences of Soil Seed Banks on Neutral and Selective Diversity in Plant Species.

Info autore

Richard J Morris' research aims to shed light on the physics of information processing in plants. He completed a degree in Mechanical Engineering at the age of 19 before obtaining a BSc in Physics and then an MSc in Theoretical Physics in 1996 from the Erzherzog University of Graz, Austria. He won an EMBL fellowship to carry out his PhD research at the European Molecular Biology Laboratory (EMBL) in the field of computational protein crystallography with Dr Victor Lamzin. After completing his PhD in 2000, Richard joined the group of Dr Gerard Bricogne (MRC-LMB Cambridge & Global Phasing Ltd) to work on Bayesian approaches for protein structure solution. Richard then joined the group of Dame Prof Janet Thornton, FRS, at the European Bioinformatics Institute (EMBL-EBI) in 2002, where he developed novel shape mathematics for protein function prediction. In 2005, Richard was recruited to the bioinformatics group at the John Innes Centre (JIC) as a tenure-track project leader. Richard played a key role in building up computational biology at JIC. He became Head of Department for Computational and Systems Biology in 2010. In 2013 he took on the role of institute strategic programme leader as an associate director. He is active in promoting quantitative, and in particular physical, approaches to plant biology and in training the next generation in mathematical modelling and computational methods.

Riassunto

Progress in plant biology relies on the quantification, analysis and mathematical modeling of data over different time and length scales. This book describes common mathematical and computational approaches as well as some carefully chosen case studies that demonstrate the use of these techniques to solve problems at the forefront of plant biology. Each chapter is written by an expert in field with the goal of conveying concepts whilst at the same time providing sufficient background and links to available software for readers to rapidly build their own models and run their own simulations. This book is aimed at postgraduate students and researchers working the field of plant systems biology and synthetic biology, but will also be a useful reference for anyone wanting to get into quantitative plant biology.

Testo aggiuntivo

“This book is an interesting collection of ten types of mathematical and computational methods used for modelling processes occurring in plants. … the book is written for an audience with a solid background in either mathematical/ computational methods or plant biology the structure of the chapters and the usage of numerous case studies complemented with an extensive set of references recommend this book is a good starting point for undergraduate, graduates and established researchers with an interest in this field.” (Irina Ioana Mohorianu, zbMATH 1415.92008, 2019)

Relazione

"This book is an interesting collection of ten types of mathematical and computational methods used for modelling processes occurring in plants. ... the book is written for an audience with a solid background in either mathematical/ computational methods or plant biology the structure of the chapters and the usage of numerous case studies complemented with an extensive set of references recommend this book is a good starting point for undergraduate, graduates and established researchers with an interest in this field." (Irina Ioana Mohorianu, zbMATH 1415.92008, 2019)

Dettagli sul prodotto

Con la collaborazione di Richar J Morris (Editore), Richard J Morris (Editore), Richard J Morris (Editore), Richard J. Morris (Editore)
Editore Springer, Berlin
 
Lingue Inglese
Formato Copertina rigida
Pubblicazione 01.01.2018
 
EAN 9783319990699
ISBN 978-3-31-999069-9
Pagine 219
Dimensioni 158 mm x 19 mm x 239 mm
Peso 506 g
Illustrazioni XIII, 219 p. 95 illus., 74 illus. in color.
Categorie Scienze naturali, medicina, informatica, tecnica > Biologia > Botanica

B, Botany, bioinformatics, Life sciences: general issues, Biomedical and Life Sciences, Biophysics, Systems Biology, Information technology: general issues, Maths for engineers, Plant Science, Plant Sciences, Mathematical modelling, Biological systems, Computational and Systems Biology, Computational Biology/Bioinformatics, Mathematical Modeling and Industrial Mathematics, Mathematical models

Recensioni dei clienti

Per questo articolo non c'è ancora nessuna recensione. Scrivi la prima recensione e aiuta gli altri utenti a scegliere.

Scrivi una recensione

Top o flop? Scrivi la tua recensione.

Per i messaggi a CeDe.ch si prega di utilizzare il modulo di contatto.

I campi contrassegnati da * sono obbligatori.

Inviando questo modulo si accetta la nostra dichiarazione protezione dati.