Fr. 159.00

Pseudocompact Topological Spaces - A Survey of Classic and New Results with Open Problems

Inglese · Copertina rigida

Spedizione di solito entro 6 a 7 settimane

Descrizione

Ulteriori informazioni

This book, intended for postgraduate students and researchers, presents many results of historical importance on pseudocompact spaces. In 1948, E. Hewitt introduced the concept of pseudocompactness which generalizes a property of compact subsets of the real line. A topological space is pseudocompact if the range of any real-valued, continuous function defined on the space is a bounded subset of the real line. Pseudocompact spaces constitute a natural and fundamental class of objects in General Topology and research into their properties has important repercussions in diverse branches of Mathematics, such as Functional Analysis, Dynamical Systems, Set Theory and Topological-Algebraic structures.

The collection of authors of this volume include pioneers in their fields who have written a comprehensive explanation on this subject. In addition, the text examines new lines of research that have been at the forefront of mathematics. There is, as yet, no text that systematically compiles and develops the extensive theory of pseudocompact spaces, making this book an essential asset for anyone in the field of topology.

Sommario

1. Basic and Classic Results on Pseudocompact Spaces.- 2. Pseudocompact Topological Groups.- 3. Pseudocompactness and Ultrafilters.- 4. Bounded Subsets of Tychonoff Spaces: A Survey of Results and Problems.- 5. Weakly Pseudocompact Spaces.- 6. Maximal Pseudocompact Spaces.- 7. Pseudocompactness in the Realm of Topological Transformation Groups.- 8. Topology of Mrówka-Isbell Spaces.

Info autore

Michael Hrušák is a Professor at the Instituto de Matemáticas at the Universidad Nacional Autónoma de México. His main area of research is set theory and its applications in topolgy, topological groups, and real anaysis. 

Riassunto

This book, intended for postgraduate students and researchers, presents many results of historical importance on pseudocompact spaces. In 1948, E. Hewitt introduced the concept of pseudocompactness which generalizes a property of compact subsets of the real line. A topological space is pseudocompact if the range of any real-valued, continuous function defined on the space is a bounded subset of the real line. Pseudocompact spaces constitute a natural and fundamental class of objects in General Topology and research into their properties has important repercussions in diverse branches of Mathematics, such as Functional Analysis, Dynamical Systems, Set Theory and Topological-Algebraic structures.

The collection of authors of this volume include pioneers in their fields who have written a comprehensive explanation on this subject. In addition, the text examines new lines of research that have been at the forefront of mathematics. There is, as yet, no text that systematically compiles and develops the extensive theory of pseudocompact spaces, making this book an essential asset for anyone in the field of topology.

Dettagli sul prodotto

Con la collaborazione di Michael Hru¿ák (Editore), Michael Hrusák (Editore), Michael Hrušák (Editore), Ánge Tamariz-Mascarúa (Editore), Ángel Tamariz-Mascarúa (Editore), Mikhail Tkachenko (Editore)
Editore Springer, Berlin
 
Lingue Inglese
Formato Copertina rigida
Pubblicazione 01.01.2018
 
EAN 9783319916798
ISBN 978-3-31-991679-8
Pagine 299
Dimensioni 161 mm x 242 mm x 22 mm
Peso 628 g
Illustrazioni XIII, 299 p.
Serie Developments in Mathematics
Developments in Mathematics
Categorie Scienze naturali, medicina, informatica, tecnica > Matematica > Geometria

B, Gruppen und Gruppentheorie, Mathematics and Statistics, Topology, Topological Groups, Lie Groups, Topological groups, Lie groups, Topological Groups and Lie Groups, Groups & group theory

Recensioni dei clienti

Per questo articolo non c'è ancora nessuna recensione. Scrivi la prima recensione e aiuta gli altri utenti a scegliere.

Scrivi una recensione

Top o flop? Scrivi la tua recensione.

Per i messaggi a CeDe.ch si prega di utilizzare il modulo di contatto.

I campi contrassegnati da * sono obbligatori.

Inviando questo modulo si accetta la nostra dichiarazione protezione dati.