Fr. 50.90

Abstract Algebra - An Introductory Course

Inglese · Tascabile

Spedizione di solito entro 6 a 7 settimane

Descrizione

Ulteriori informazioni

This carefully written textbook offers a thorough introduction to abstract algebra, covering the fundamentals of groups, rings and fields. 
The first two chapters present preliminary topics such as properties of the integers and equivalence relations. The author then explores the first major algebraic structure, the group, progressing as far as the Sylow theorems and the classification of finite abelian groups. An introduction to ring theory follows, leading to a discussion of fields and polynomials that includes sections on splitting fields and the construction of finite fields. The final part contains applications to public key cryptography as well as classical straightedge and compass constructions.
Explaining key topics at a gentle pace, this book is aimed at undergraduate students. It assumes no prior knowledge of the subject and contains over 500 exercises, half of which have detailed solutions provided.

Sommario

Part I Preliminaries.- 1 Relations and Functions.- 2 The Integers and Modular Arithmetic.- Part II Groups.- 3 Introduction to Groups.- 4 Factor Groups and Homomorphisms.- 5 Direct Products and the Classification of Finite Abelian Groups.- 6 Symmetric and Alternating Groups.- 7 The Sylow Theorems.- Part III Rings.- 8 Introduction to Rings.- 9 Ideals, Factor Rings and Homomorphisms.- 10 Special Types of Domains.- Part IV Fields and Polynomials.- 11 Irreducible Polynomials.- 12 Vector Spaces and Field Extensions.- Part V Applications.- 13 Public Key Cryptography.- 14 Straightedge and Compass Constructions.- A The Complex Numbers.- B Matrix Algebra.- Solutions.- Index.

Info autore

Gregory T. Lee is a professor at Lakehead University specializing in group rings, a branch of abstract algebra. He has published numerous papers on the subject, as well as a monograph with Springer.

Riassunto

This carefully written textbook offers a thorough introduction to abstract algebra, covering the fundamentals of groups, rings and fields. 
The first two chapters present preliminary topics such as properties of the integers and equivalence relations. The author then explores the first major algebraic structure, the group, progressing as far as the Sylow theorems and the classification of finite abelian groups. An introduction to ring theory follows, leading to a discussion of fields and polynomials that includes sections on splitting fields and the construction of finite fields. The final part contains applications to public key cryptography as well as classical straightedge and compass constructions.

Explaining key topics at a gentle pace, this book is aimed at undergraduate students. It assumes no prior knowledge of the subject and contains over 500 exercises, half of which have detailed solutions provided.

Testo aggiuntivo

“The book is very clearly written. The author successfully presents the material in an appealing way. A big number of examples enriches the text and enlightens the key topics. Exercises of different level are included at the end of each chapter and solutions to approximately half of the exercises are included at the very end of the book. In summary … the book can definitely be recommended as text book for a first introduction to abstract algebra.” (C. Fuchs, Internationale Mathematische Nachrichten IMN, Vol. 73 (240), April, 2019)
“The book provides the reader with valuable technical information regarding the introductory notions and main results of abstract algebra. The author presents concepts, theorems and applications in a very clear and fluent way within the manuscript. Thus, ‘Abstract Algebra. An Introductory Course’ is obviously a well written document with respect to the field of abstract algebra.” (Diana Maimut, zbMATH 1401.00003, 2019)

Relazione

"The book is very clearly written. The author successfully presents the material in an appealing way. A big number of examples enriches the text and enlightens the key topics. Exercises of different level are included at the end of each chapter and solutions to approximately half of the exercises are included at the very end of the book. In summary ... the book can definitely be recommended as text book for a first introduction to abstract algebra." (C. Fuchs, Internationale Mathematische Nachrichten IMN, Vol. 73 (240), April, 2019)
"The book provides the reader with valuable technical information regarding the introductory notions and main results of abstract algebra. The author presents concepts, theorems and applications in a very clear and fluent way within the manuscript. Thus, 'Abstract Algebra. An Introductory Course' is obviously a well written document with respect to the field of abstract algebra." (Diana Maimut, zbMATH 1401.00003, 2019)

Dettagli sul prodotto

Autori Gregory T Lee, Gregory T. Lee
Editore Springer, Berlin
 
Lingue Inglese
Formato Tascabile
Pubblicazione 01.01.2018
 
EAN 9783319776484
ISBN 978-3-31-977648-4
Pagine 301
Dimensioni 155 mm x 17 mm x 235 mm
Peso 482 g
Illustrazioni XI, 301 p. 7 illus.
Serie Springer Undergraduate Mathematics Series
Springer Undergraduate Mathematics Series
Categorie Scienze naturali, medicina, informatica, tecnica > Matematica > Aritmetica, algebra

Algebra, B, Group Theory, Mathematics and Statistics, Rings (Algebra), Group Theory and Generalizations, Field Theory and Polynomials, Field theory (Physics), Associative rings, Associative Rings and Algebras

Recensioni dei clienti

Per questo articolo non c'è ancora nessuna recensione. Scrivi la prima recensione e aiuta gli altri utenti a scegliere.

Scrivi una recensione

Top o flop? Scrivi la tua recensione.

Per i messaggi a CeDe.ch si prega di utilizzare il modulo di contatto.

I campi contrassegnati da * sono obbligatori.

Inviando questo modulo si accetta la nostra dichiarazione protezione dati.