Fr. 65.00

Double Hilbert Transforms - Study of Lp bounds

Inglese, Tedesco · Tascabile

Spedizione di solito entro 2 a 3 settimane (il titolo viene stampato sull'ordine)

Descrizione

Ulteriori informazioni

The Hilbert transform is a classical example of a singular integral operator. It is weak-type 1-1 and Lp bounded for all finite p 1. The Hilbert transform can be thought of as a convolution operator whose kernel is a tempered distribution and this has led to the study of weak-type 1-1 and Lp bounds of convolution operators that are more general than the Hilbert transform. It is known that convolution operators whose kernel satisfy certain smoothness condition and cancellation condition obey bounds similar to that of Hilbert transform. However, operators whose kernel are supported along curves or surfaces are hard to study for such type of bounds. In the recent past a lot of work has been published along this line and the problems considered in this book are motivated from some of these recent results. The book mainly discusses the Lp bounds of double Hilbert transforms in one and three dimensions that are associated to the polynomials in two real variables. It is fascinating to realize how some of the monomials of a given polynomial play a dominating role in deciding the boundedness of the associated double Hilbert transform.

Info autore










Prof. Dr. S. K. Patel received a PhD in 2004 from The University of Edinburgh in the area of Harmonic analysis. Currently, he is a Professor in Mathematics at the Government Engineering College-Bhuj affiliated to the Gujarat Technological University. He has a teaching experience of more than 20 years and has a good number of publications.

Dettagli sul prodotto

Autori S K Patel, S. K. Patel
Editore LAP Lambert Academic Publishing
 
Lingue Inglese, Tedesco
Formato Tascabile
Pubblicazione 20.11.2017
 
EAN 9783659537028
ISBN 978-3-659-53702-8
Pagine 124
Dimensioni 150 mm x 220 mm x 7 mm
Peso 203 g
Categoria Scienze naturali, medicina, informatica, tecnica > Matematica > Analisi

Recensioni dei clienti

Per questo articolo non c'è ancora nessuna recensione. Scrivi la prima recensione e aiuta gli altri utenti a scegliere.

Scrivi una recensione

Top o flop? Scrivi la tua recensione.

Per i messaggi a CeDe.ch si prega di utilizzare il modulo di contatto.

I campi contrassegnati da * sono obbligatori.

Inviando questo modulo si accetta la nostra dichiarazione protezione dati.