Fr. 135.00

Covariant Schrödinger Semigroups on Riemannian Manifolds; .

Inglese · Copertina rigida

Spedizione di solito entro 6 a 7 settimane

Descrizione

Ulteriori informazioni

This monograph discusses covariant Schrödinger operators and their heat semigroups on noncompact Riemannian manifolds and aims to fill a gap in the literature, given the fact that the existing literature on Schrödinger operators has mainly focused on scalar Schrödinger operators on Euclidean spaces so far. In particular, the book studies operators that act on sections of vector bundles. In addition, these operators are allowed to have unbounded potential terms, possibly with strong local singularities.
The results presented here provide the first systematic study of such operators that is sufficiently general to simultaneously treat the natural operators from quantum mechanics, such as magnetic Schrödinger operators with singular electric potentials, and those from geometry, such as squares of Dirac operators that have smooth but endomorphism-valued and possibly unbounded potentials.

The book is largely self-contained, making it accessible for graduate and postgraduate students alike. Since it also includes unpublished findings and new proofs of recently published results, it will also be interesting for researchers from geometric analysis, stochastic analysis, spectral theory, and mathematical physics..

Sommario

Sobolev spaces on vector bundles.- Smooth heat kernels on vector bundles.- Basis differential operators on Riemannian manifolds.- Some specific results for the minimal heat kernel.- Wiener measure and Brownian motion on Riemannian manifolds.- Contractive Dynkin potentials and Kato potentials.- Foundations of covariant Schrödinger semigroups.- Compactness of resolvents for covariant Schrödinger operators.- L^p properties of covariant Schrödinger semigroups.- Continuity properties of covariant Schrödinger semigroups.- Integral kernels for covariant Schrödinger semigroup.- Essential self-adjointness of covariant Schrödinger semigroups.- Form cores.- Applications.

Riassunto

Develops basic vector-bundle-valued objects of geometric analysis from scratchGives a detailed proof of the Feynman-Kac fomula with singular potentials on manifolds
Includes previously unpublished results

Dettagli sul prodotto

Autori Batu Güneysu
Editore Springer, Berlin
 
Lingue Inglese
Formato Copertina rigida
Pubblicazione 01.01.2018
 
EAN 9783319689029
ISBN 978-3-31-968902-9
Pagine 239
Dimensioni 156 mm x 242 mm x 20 mm
Peso 542 g
Illustrazioni XVIII, 239 p.
Serie Operator Theory: Advances and Applications
Operator Theory: Advances and Applications
Categorie Scienze naturali, medicina, informatica, tecnica > Matematica > Analisi

Analysis, B, Differentialrechnung und -gleichungen, Mathematics and Statistics, Manifolds (Mathematics), Partial Differential Equations, Differential calculus & equations, Global analysis (Mathematics), Global Analysis and Analysis on Manifolds

Recensioni dei clienti

Per questo articolo non c'è ancora nessuna recensione. Scrivi la prima recensione e aiuta gli altri utenti a scegliere.

Scrivi una recensione

Top o flop? Scrivi la tua recensione.

Per i messaggi a CeDe.ch si prega di utilizzare il modulo di contatto.

I campi contrassegnati da * sono obbligatori.

Inviando questo modulo si accetta la nostra dichiarazione protezione dati.